Suppr超能文献

CDKD-w+:一种基于w+空间编码的冠状动脉数字减影血管造影视频序列关键帧识别方法。

CDKD-w+: A Keyframe Recognition Method for Coronary Digital Subtraction Angiography Video Sequence Based on w+ Space Encoding.

作者信息

Zhu Yong, Li Haoyu, Xiao Shuai, Yu Wei, Shang Hongyu, Wang Lin, Liu Yang, Wang Yin, Yang Jiachen

机构信息

School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China.

Tianjin Institute of Software Engineering, Tianjin 300387, China.

出版信息

Sensors (Basel). 2025 Jan 24;25(3):710. doi: 10.3390/s25030710.

Abstract

Currently, various deep learning methods can assist in medical diagnosis. Coronary Digital Subtraction Angiography (DSA) is a medical imaging technology used in cardiac interventional procedures. By employing X-ray sensors to visualize the coronary arteries, it generates two-dimensional images from any angle. However, due to the complexity of the coronary structures, the 2D images may sometimes lack sufficient information, necessitating the construction of a 3D model. Camera-level 3D modeling can be realized based on deep learning. Nevertheless, the beating of the heart results in varying degrees of arterial vasoconstriction and vasodilation, leading to substantial discrepancies between DSA sequences, which introduce errors in 3D modeling of the coronary arteries, resulting in the inability of the 3D model to reflect the coronary arteries. We propose a coronary DSA video sequence keyframe recognition method, CDKD-w+, based on w+ space encoding. The method utilizes a pSp encoder to encode the coronary DSA images, converting them into latent codes in the w+ space. Differential analysis of inter-frame latent codes is employed for heartbeat keyframe localization, aiding in coronary 3D modeling. Experimental results on a self-constructed coronary DSA heartbeat keyframe recognition dataset demonstrate an accuracy of 97%, outperforming traditional metrics such as L1, SSIM, and PSNR.

摘要

目前,各种深度学习方法可辅助医学诊断。冠状动脉数字减影血管造影(DSA)是一种用于心脏介入手术的医学成像技术。通过使用X射线传感器来可视化冠状动脉,它可以从任何角度生成二维图像。然而,由于冠状动脉结构的复杂性,二维图像有时可能缺乏足够的信息,因此需要构建三维模型。基于深度学习可以实现相机级别的三维建模。然而,心脏跳动会导致动脉不同程度的收缩和舒张,导致DSA序列之间存在显著差异,这在冠状动脉的三维建模中引入了误差,导致三维模型无法反映冠状动脉。我们提出了一种基于w+空间编码的冠状动脉DSA视频序列关键帧识别方法CDKD-w+。该方法利用pSp编码器对冠状动脉DSA图像进行编码,将其转换为w+空间中的潜在代码。通过对帧间潜在代码进行差分分析来定位心跳关键帧,辅助冠状动脉三维建模。在自建的冠状动脉DSA心跳关键帧识别数据集上的实验结果表明,准确率达到97%,优于L1、SSIM和PSNR等传统指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7f4/11821101/e32ddeefe5cb/sensors-25-00710-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验