Suppr超能文献

不良金属中的优良等离激元。

Good plasmons in a bad metal.

作者信息

Ruta Francesco L, Shao Yinming, Acharya Swagata, Mu Anqi, Jo Na Hyun, Ryu Sae Hee, Balatsky Daria, Su Yifan, Pashov Dimitar, Kim Brian S Y, Katsnelson Mikhail I, Analytis James G, Rotenberg Eli, Millis Andrew J, van Schilfgaarde Mark, Basov D N

机构信息

Department of Physics, Columbia University, New York, NY, USA.

Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.

出版信息

Science. 2025 Jan 2;387(6735):786-791. doi: 10.1126/science.adr5926. Epub 2025 Feb 13.

Abstract

Correlated metals may exhibit unusually high resistivity that increases linearly in temperature, breaking through the Mott-Ioffe-Regel bound, above which coherent quasiparticles are destroyed. The fate of collective charge excitations, or plasmons, in these systems is a subject of debate. Several studies have suggested that plasmons are overdamped, whereas other studies have detected propagating plasmons. In this work, we present direct nano-optical images of low-loss hyperbolic plasmon polaritons (HPPs) in the correlated van der Waals metal MoOCl. HPPs are plasmon-photon modes that waveguide through extremely anisotropic media and are remarkably long-lived in MoOCl. Photoemission data presented here reveal a highly anisotropic Fermi surface, reconstructed and made partly incoherent, likely through electronic interactions as explained by many-body theory. HPPs remain long-lived despite this, revealing previously unseen imprints of many-body effects on plasmonic collective modes.

摘要

相关金属可能表现出异常高的电阻率,其随温度呈线性增加,突破了莫特 - 约费 - 雷格尔界限,高于该界限时相干准粒子会被破坏。在这些系统中,集体电荷激发(即等离激元)的命运是一个有争议的话题。几项研究表明等离激元被过度阻尼,而其他研究则检测到了传播的等离激元。在这项工作中,我们展示了相关范德华金属MoOCl中低损耗双曲线等离激元极化激元(HPPs)的直接纳米光学图像。HPPs是通过极其各向异性的介质进行波导的等离激元 - 光子模式,并且在MoOCl中寿命极长。此处给出的光电子能谱数据揭示了一个高度各向异性的费米面,它经过重构且部分变得非相干,这可能是通过多体理论所解释的电子相互作用导致的。尽管如此,HPPs仍然寿命很长,揭示了多体效应在等离激元集体模式上以前未被发现的印记。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验