Melchioni Nicola, Mancini Andrea, Nan Lin, Efimova Anastasiia, Venturi Giacomo, Ambrosio Antonio
Centre for Nano Science and Technology, Fondazione Istituto Italiano di Tecnologia Via Rubattino 81, Milano 20134, Italy.
Physics Department, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20134, Italy.
ACS Nano. 2025 Jul 15;19(27):25413-25421. doi: 10.1021/acsnano.5c07323. Epub 2025 Jul 1.
Optically anisotropic bidimensional crystals offer a promising path toward compact, lithography-free polarization control in integrated photonic devices. However, most materials exhibit only modest optical anisotropy, requiring long propagation lengths to effectively modify the polarization state of light, hindering miniaturization and integration. While some materials achieve strong polarization extinction via directional absorption, this often comes at the cost of high optical losses, limiting their practical use. Here, we investigate the van der Waals crystal MoOCl that exhibits broadband in-plane hyperbolicity spanning the visible to near-infrared spectrum, driven by a Drude-like response. Thin MoOCl (∼100-200 nm) flakes achieve high reflectivity (>80%) along the metallic axis and strong transmission (>50%) along the orthogonal dielectric axis, enabling polarization extinction with minimal loss. From polarization-resolved transmission and reflection measurements, we extract an in-plane dielectric permittivity anisotropy exceeding |Δ(ε)| > 10 for wavelengths above 600 nm, among the highest reported to date. We further demonstrate the integration of a MoOCl flake directly onto a connected optical fiber to realize a broadband, ultrathin polarizer. These results establish MoOCl as a compelling platform for low-loss, miniaturized polarization control in next-generation photonic systems.
光学各向异性二维晶体为集成光子器件中实现紧凑、无光刻的偏振控制提供了一条有前景的途径。然而,大多数材料仅表现出适度的光学各向异性,需要较长的传播长度才能有效地改变光的偏振态,这阻碍了小型化和集成。虽然一些材料通过定向吸收实现了强偏振消光,但这往往以高光学损耗为代价,限制了它们的实际应用。在此,我们研究了范德华晶体MoOCl,它在类德鲁德响应的驱动下,在可见光到近红外光谱范围内呈现宽带面内双曲性。薄MoOCl(约100 - 200纳米)薄片在金属轴方向实现了高反射率(>80%),在正交介电轴方向实现了强透射率(>50%),能够以最小的损耗实现偏振消光。通过偏振分辨透射和反射测量,我们提取出对于波长大于600纳米的面内介电常数各向异性超过|Δ(ε)| > 10,这是迄今为止报道的最高值之一。我们进一步展示了将MoOCl薄片直接集成到连接的光纤上,以实现宽带、超薄偏振器。这些结果确立了MoOCl作为下一代光子系统中低损耗、小型化偏振控制的引人注目的平台。