Zou Meng, Tanabe Katsuya, Amo-Shiinoki Kikuko, Kohno Daisuke, Kagawa Syota, Shirasawa Hideki, Ikeda Kenji, Taguchi Akihiko, Ohta Yasuharu, Okuya Shigeru, Yamada Tetsuya, Kitamura Tadahiro, Masutani Hiroshi, Tanizawa Yukio
Division of Endocrinology, Metabolism, Hematological Sciences and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan.
Division of Endocrinology, Metabolism, Hematological Sciences and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan.
J Biol Chem. 2025 Mar;301(3):108293. doi: 10.1016/j.jbc.2025.108293. Epub 2025 Feb 11.
Mammals adaptively regulate energy metabolism in response to environmental changes such as starvation and cold circumstances. Thioredoxin-interacting protein (Txnip), known as a redox regulator, serves as a nutrient sensor regulating energy homeostasis. Txnip is essential for mice to adapt to starvation, but its role in adapting to cold circumstances remains unclear. Here, we identified Txnip as a pivotal factor for maintaining nonshivering thermogenesis in mice. Txnip protein levels in brown adipose tissue (BAT) were upregulated by the acute cold exposure. Txnip-deficient (Txnip) mice acclimated to thermoneutrality (30 °C) exhibited significant BAT enlargement and triglyceride accumulation with downregulation of BAT signature and metabolic gene expression. Upon acute cold exposure (5 °C), Txnip mice showed a rapid decline in BAT surface temperatures with the failure of increasing metabolic respiration, developing lethal hypothermia. The BAT dysfunction and cold susceptibility in Txnip mice were corrected by acclimation to 16 °C, protecting the mice from life-threatening hypothermia. Transcriptomic and metabolomic analysis using dissected BAT revealed that despite preserving glycolysis, the BAT of Txnip mice failed to activate the catabolism of branched-chain amino acids and fatty acids in response to acute cold stress. These findings illustrate that Txnip is required for maintaining basal BAT function and ensuring cold-induced thermogenesis.
哺乳动物会根据饥饿和寒冷等环境变化适应性地调节能量代谢。硫氧还蛋白相互作用蛋白(Txnip)作为一种氧化还原调节因子,是调节能量稳态的营养传感器。Txnip对小鼠适应饥饿至关重要,但其在适应寒冷环境中的作用仍不清楚。在此,我们确定Txnip是维持小鼠非颤抖性产热的关键因素。急性冷暴露可上调棕色脂肪组织(BAT)中的Txnip蛋白水平。适应热中性(30°C)的Txnip基因敲除(Txnip-/-)小鼠表现出显著的BAT增大和甘油三酯积累,同时BAT标志性和代谢基因表达下调。急性冷暴露(5°C)后,Txnip-/-小鼠的BAT表面温度迅速下降,无法增加代谢性呼吸,进而发展为致死性体温过低。将Txnip-/-小鼠适应16°C可纠正其BAT功能障碍和对寒冷的易感性,保护小鼠免受危及生命的体温过低。对分离的BAT进行转录组和代谢组分析表明,尽管Txnip-/-小鼠的BAT保留了糖酵解能力,但在急性冷应激下未能激活支链氨基酸和脂肪酸的分解代谢。这些发现表明,Txnip是维持基础BAT功能和确保冷诱导产热所必需的。