Parra Jorge, Navarro-Arenas Juan, Sanchis Pablo
Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
Institute of Materials Science (ICMUV), Universitat de València, Carrer del Catedràtic José Beltrán Martinez 2, 46980, Valencia, Spain.
Sci Rep. 2025 Feb 15;15(1):5608. doi: 10.1038/s41598-025-90350-3.
The increasing demand for efficient hardware in neural computation highlights the limitations of electronic-based systems in terms of speed, energy efficiency, and scalability. Wavelength-division multiplexing (WDM) photonic neural networks offer a high-bandwidth, low-latency alternative but require effective photonic activation functions. Here, we propose a power-efficient and tunable-bias all-optical nonlinear activation function using vanadium dioxide (VO) for WDM photonic neural networks. We engineered a SiN/BTO waveguide with a VO patch to exploit the phase-change material's reversible insulator-to-metal transition (IMT) for nonlinear activation. We conducted numerical simulations to optimize the waveguide geometry and VO parameters, minimizing propagation and coupling losses while achieving a strong nonlinear response and low-threshold activation power. Our proposed device features a sub-milliwatt threshold power, a footprint of 5 μm, and an ELU-like activation function. Moreover, the bias of our device could be thermally tuned, improving the speed and power efficiency. On the other hand, performance evaluations using the CIFAR-10 dataset confirmed the device's potential for convolutional neural networks (CNN). Our results show that a hybrid VO/SiN/BTO platform could play a prominent role in the path toward the development of high-performance photonic neural networks.
神经计算中对高效硬件的需求不断增加,凸显了基于电子的系统在速度、能源效率和可扩展性方面的局限性。波分复用(WDM)光子神经网络提供了一种高带宽、低延迟的替代方案,但需要有效的光子激活函数。在此,我们提出了一种用于WDM光子神经网络的、具有功率效率且偏置可调的全光非线性激活函数,该函数使用二氧化钒(VO)。我们设计了一种带有VO贴片的SiN/BTO波导,以利用相变材料的可逆绝缘体到金属转变(IMT)实现非线性激活。我们进行了数值模拟,以优化波导几何结构和VO参数,在实现强非线性响应和低阈值激活功率的同时,将传播和耦合损耗降至最低。我们提出的器件具有亚毫瓦的阈值功率、5μm的占地面积以及类似ELU的激活函数。此外,我们器件的偏置可以进行热调谐,从而提高速度和功率效率。另一方面,使用CIFAR-10数据集进行的性能评估证实了该器件在卷积神经网络(CNN)方面的潜力。我们的结果表明,混合VO/SiN/BTO平台在高性能光子神经网络的发展道路上可能发挥重要作用。