Suppr超能文献

用于波分复用光子神经网络的亚毫瓦阈值功率和可调偏置全光非线性激活函数(基于二氧化钒)

Sub-milliwatt threshold power and tunable-bias all-optical nonlinear activation function using vanadium dioxide for wavelength-division multiplexing photonic neural networks.

作者信息

Parra Jorge, Navarro-Arenas Juan, Sanchis Pablo

机构信息

Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.

Institute of Materials Science (ICMUV), Universitat de València, Carrer del Catedràtic José Beltrán Martinez 2, 46980, Valencia, Spain.

出版信息

Sci Rep. 2025 Feb 15;15(1):5608. doi: 10.1038/s41598-025-90350-3.

Abstract

The increasing demand for efficient hardware in neural computation highlights the limitations of electronic-based systems in terms of speed, energy efficiency, and scalability. Wavelength-division multiplexing (WDM) photonic neural networks offer a high-bandwidth, low-latency alternative but require effective photonic activation functions. Here, we propose a power-efficient and tunable-bias all-optical nonlinear activation function using vanadium dioxide (VO) for WDM photonic neural networks. We engineered a SiN/BTO waveguide with a VO patch to exploit the phase-change material's reversible insulator-to-metal transition (IMT) for nonlinear activation. We conducted numerical simulations to optimize the waveguide geometry and VO parameters, minimizing propagation and coupling losses while achieving a strong nonlinear response and low-threshold activation power. Our proposed device features a sub-milliwatt threshold power, a footprint of 5 μm, and an ELU-like activation function. Moreover, the bias of our device could be thermally tuned, improving the speed and power efficiency. On the other hand, performance evaluations using the CIFAR-10 dataset confirmed the device's potential for convolutional neural networks (CNN). Our results show that a hybrid VO/SiN/BTO platform could play a prominent role in the path toward the development of high-performance photonic neural networks.

摘要

神经计算中对高效硬件的需求不断增加,凸显了基于电子的系统在速度、能源效率和可扩展性方面的局限性。波分复用(WDM)光子神经网络提供了一种高带宽、低延迟的替代方案,但需要有效的光子激活函数。在此,我们提出了一种用于WDM光子神经网络的、具有功率效率且偏置可调的全光非线性激活函数,该函数使用二氧化钒(VO)。我们设计了一种带有VO贴片的SiN/BTO波导,以利用相变材料的可逆绝缘体到金属转变(IMT)实现非线性激活。我们进行了数值模拟,以优化波导几何结构和VO参数,在实现强非线性响应和低阈值激活功率的同时,将传播和耦合损耗降至最低。我们提出的器件具有亚毫瓦的阈值功率、5μm的占地面积以及类似ELU的激活函数。此外,我们器件的偏置可以进行热调谐,从而提高速度和功率效率。另一方面,使用CIFAR-10数据集进行的性能评估证实了该器件在卷积神经网络(CNN)方面的潜力。我们的结果表明,混合VO/SiN/BTO平台在高性能光子神经网络的发展道路上可能发挥重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed97/11829994/eeaa9223381a/41598_2025_90350_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验