Berggren Karl, Xia Qiangfei, Likharev Konstantin K, Strukov Dmitri B, Jiang Hao, Mikolajick Thomas, Querlioz Damien, Salinga Martin, Erickson John R, Pi Shuang, Xiong Feng, Lin Peng, Li Can, Chen Yu, Xiong Shisheng, Hoskins Brian D, Daniels Matthew W, Madhavan Advait, Liddle James A, McClelland Jabez J, Yang Yuchao, Rupp Jennifer, Nonnenmann Stephen S, Cheng Kwang-Ting, Gong Nanbo, Lastras-Montaño Miguel Angel, Talin A Alec, Salleo Alberto, Shastri Bhavin J, de Lima Thomas Ferreira, Prucnal Paul, Tait Alexander N, Shen Yichen, Meng Huaiyu, Roques-Carmes Charles, Cheng Zengguang, Bhaskaran Harish, Jariwala Deep, Wang Han, Shainline Jeffrey M, Segall Kenneth, Yang J Joshua, Roy Kaushik, Datta Suman, Raychowdhury Arijit
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America.
Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, United States of America.
Nanotechnology. 2021 Jan 1;32(1):012002. doi: 10.1088/1361-6528/aba70f.
Recent progress in artificial intelligence is largely attributed to the rapid development of machine learning, especially in the algorithm and neural network models. However, it is the performance of the hardware, in particular the energy efficiency of a computing system that sets the fundamental limit of the capability of machine learning. Data-centric computing requires a revolution in hardware systems, since traditional digital computers based on transistors and the von Neumann architecture were not purposely designed for neuromorphic computing. A hardware platform based on emerging devices and new architecture is the hope for future computing with dramatically improved throughput and energy efficiency. Building such a system, nevertheless, faces a number of challenges, ranging from materials selection, device optimization, circuit fabrication and system integration, to name a few. The aim of this Roadmap is to present a snapshot of emerging hardware technologies that are potentially beneficial for machine learning, providing the Nanotechnology readers with a perspective of challenges and opportunities in this burgeoning field.
人工智能的最新进展在很大程度上归功于机器学习的快速发展,尤其是在算法和神经网络模型方面。然而,硬件的性能,特别是计算系统的能源效率,设定了机器学习能力的基本限制。以数据为中心的计算需要硬件系统的一场革命,因为基于晶体管和冯·诺依曼架构的传统数字计算机并非专门为神经形态计算而设计。基于新兴器件和新架构的硬件平台是未来计算的希望所在,有望大幅提高吞吐量和能源效率。然而,构建这样一个系统面临诸多挑战,包括材料选择、器件优化、电路制造和系统集成等等。本路线图的目的是展示新兴硬件技术的概况,这些技术可能对机器学习有益,为《纳米技术》的读者提供在这个新兴领域中挑战与机遇的视角。