Suppr超能文献

一种用于全面心电图解读的人工智能心电图算法:它能通过“图灵测试”吗?

An artificial intelligence-enabled ECG algorithm for comprehensive ECG interpretation: Can it pass the 'Turing test'?

作者信息

Kashou Anthony H, Mulpuru Siva K, Deshmukh Abhishek J, Ko Wei-Yin, Attia Zachi I, Carter Rickey E, Friedman Paul A, Noseworthy Peter A

机构信息

Department of Medicine, Mayo Clinic, Rochester, Minnesota.

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.

出版信息

Cardiovasc Digit Health J. 2021 May 5;2(3):164-170. doi: 10.1016/j.cvdhj.2021.04.002. eCollection 2021 Jun.

Abstract

OBJECTIVE

To develop an artificial intelligence (AI)-enabled electrocardiogram (ECG) algorithm capable of comprehensive, human-like ECG interpretation and compare its diagnostic performance against conventional ECG interpretation methods.

METHODS

We developed a novel AI-enabled ECG (AI-ECG) algorithm capable of complete 12-lead ECG interpretation. It was trained on nearly 2.5 million standard 12-lead ECGs from over 720,000 adult patients obtained at the Mayo Clinic ECG laboratory between 2007 and 2017. We then compared the need for human over-reading edits of the reports generated by the Marquette 12SL automated computer program, AI-ECG algorithm, and final clinical interpretations on 500 randomly selected ECGs from 500 patients. In a blinded fashion, 3 cardiac electrophysiologists adjudicated each interpretation as (1) ideal (ie, changes needed), (2) acceptable (ie, edits needed), or (3) unacceptable (ie, edits needed).

RESULTS

Cardiologists determined that on average 202 (13.5%), 123 (8.2%), and 90 (6.0%) of the interpretations required major edits from the computer program, AI-ECG algorithm, and final clinical interpretations, respectively. They considered 958 (63.9%), 1058 (70.5%), and 1118 (74.5%) interpretations as from the computer program, AI-ECG algorithm, and final clinical interpretations, respectively. They considered 340 (22.7%), 319 (21.3%), and 292 (19.5%) interpretations as from the computer program, AI-ECG algorithm, and final clinical interpretations, respectively.

CONCLUSION

An AI-ECG algorithm outperforms an existing standard automated computer program and better approximates expert over-read for comprehensive 12-lead ECG interpretation.

摘要

目的

开发一种能够进行全面、类似人类心电图解读的人工智能(AI)心电图算法,并将其诊断性能与传统心电图解读方法进行比较。

方法

我们开发了一种能够完成12导联心电图解读的新型AI心电图(AI-ECG)算法。该算法在2007年至2017年期间从梅奥诊所心电图实验室获取的超过720,000名成年患者的近250万份标准12导联心电图上进行了训练。然后,我们比较了Marquette 12SL自动计算机程序、AI-ECG算法生成的报告以及对500名患者的500份随机选择的心电图进行的最终临床解读中人工复查编辑的需求。以盲法方式,3名心脏电生理学家将每种解读判定为(1)理想(即无需更改)、(2)可接受(即需要编辑)或(3)不可接受(即需要大量编辑)。

结果

心脏病专家确定,计算机程序、AI-ECG算法和最终临床解读分别平均需要对202份(13.5%)、123份(8.2%)和90份(6.0%)解读进行重大编辑。他们分别将958份(63.9%)、1058份(70.5%)和1118份(74.5%)解读视为无需编辑,分别将340份(22.7%)、319份(21.3%)和292份(19.5%)解读视为需要编辑。

结论

一种AI-ECG算法在全面的12导联心电图解读方面优于现有的标准自动计算机程序,并且更接近专家复查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b7a/8890338/08d5c7aa525e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验