Suppr超能文献

利用全血细胞计数和血脂谱建立预测上皮性卵巢癌复发的列线图并进行验证。

Development and validation of a nomogram to predict recurrence in epithelial ovarian cancer using complete blood count and lipid profiles.

作者信息

Tang Xi, He Jingke, Huang Qin, Chen Yi, Chen Ke, Liu Jing, Tian Yingyu, Wang Hui

机构信息

Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

出版信息

Front Oncol. 2025 Feb 3;15:1525867. doi: 10.3389/fonc.2025.1525867. eCollection 2025.

Abstract

OBJECTIVE

Ovarian cancer is one of the most lethal gynecological malignancies. This study aimed to evaluate the prognostic significance of complete blood count (CBC) and lipid profile in patients with optimally debulked epithelial ovarian cancer (EOC) and develop a nomogram model to predict recurrence-free survival (RFS).

METHODS

This retrospective study analyzed patients diagnosed with EOC between January 2018 and June 2022.

RESULTS

A total of 307 patients were randomly divided into training and validation sets in a ratio of 7:3. Grade, International Federation of Gynecology and Obstetrics (FIGO) stage, platelet-to-lymphocyte ratio, red blood cell distribution width-coefficient of variation, triglycerides, and human epididymal protein 4 were identified as independent prognostic factors. The novel nomogram displayed a good predictive performance, with a concordance index (C-index) of 0.787 in the training group and 0.807 in the validation group. The areas under the curve for 1-, 3-, and 5-year RFS were 0.770, 0.881, and 0.904, respectively, in the training group, and 0.667, 0.906, and 0.886, respectively, in the validation group. The calibration curves exhibited good concordance between the predicted survival probabilities and actual observations. Time-dependent C-index curves, integrated discrimination improvement, net reclassification index, and decision curve analysis showed that the nomogram outperformed FIGO staging.

CONCLUSION

This study established and validated a nomogram combining CBC and lipid profiles to predict RFS in patients with optimally debulked EOC, which is expected to aid gynecologists in individualized prognosis assessment and clinical management.

摘要

目的

卵巢癌是最致命的妇科恶性肿瘤之一。本研究旨在评估全血细胞计数(CBC)和血脂谱在接受最佳肿瘤细胞减灭术的上皮性卵巢癌(EOC)患者中的预后意义,并建立一个列线图模型来预测无复发生存期(RFS)。

方法

这项回顾性研究分析了2018年1月至2022年6月期间被诊断为EOC的患者。

结果

总共307例患者以7:3的比例随机分为训练集和验证集。分级、国际妇产科联盟(FIGO)分期、血小板与淋巴细胞比值、红细胞分布宽度变异系数、甘油三酯和人附睾蛋白4被确定为独立的预后因素。新的列线图显示出良好的预测性能,训练组的一致性指数(C指数)为0.787,验证组为0.807。训练组1年、3年和5年RFS的曲线下面积分别为0.770、0.881和0.904,验证组分别为0.667、0.906和0.886。校准曲线显示预测的生存概率与实际观察结果之间具有良好的一致性。时间依赖性C指数曲线、综合判别改善、净重新分类指数和决策曲线分析表明,列线图的表现优于FIGO分期。

结论

本研究建立并验证了一个结合CBC和血脂谱的列线图,用于预测接受最佳肿瘤细胞减灭术的EOC患者的RFS,有望帮助妇科医生进行个体化预后评估和临床管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10e1/11830618/6dcb12c97770/fonc-15-1525867-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验