Suppr超能文献

人工智能在蛋白质-配体相互作用预测中的应用:最新进展与未来方向。

Artificial intelligence in the prediction of protein-ligand interactions: recent advances and future directions.

机构信息

Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA.

Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA.

出版信息

Brief Bioinform. 2022 Jan 17;23(1). doi: 10.1093/bib/bbab476.

Abstract

New drug production, from target identification to marketing approval, takes over 12 years and can cost around $2.6 billion. Furthermore, the COVID-19 pandemic has unveiled the urgent need for more powerful computational methods for drug discovery. Here, we review the computational approaches to predicting protein-ligand interactions in the context of drug discovery, focusing on methods using artificial intelligence (AI). We begin with a brief introduction to proteins (targets), ligands (e.g. drugs) and their interactions for nonexperts. Next, we review databases that are commonly used in the domain of protein-ligand interactions. Finally, we survey and analyze the machine learning (ML) approaches implemented to predict protein-ligand binding sites, ligand-binding affinity and binding pose (conformation) including both classical ML algorithms and recent deep learning methods. After exploring the correlation between these three aspects of protein-ligand interaction, it has been proposed that they should be studied in unison. We anticipate that our review will aid exploration and development of more accurate ML-based prediction strategies for studying protein-ligand interactions.

摘要

新药的生产,从靶点确证到上市审批,需要超过 12 年的时间,花费约 26 亿美元。此外,COVID-19 大流行凸显了药物发现中更强大的计算方法的迫切需求。在这里,我们回顾了药物发现中预测蛋白-配体相互作用的计算方法,重点介绍了使用人工智能 (AI) 的方法。我们首先简要介绍一下非专业人士的蛋白质(靶点)、配体(如药物)及其相互作用。接下来,我们回顾了在蛋白-配体相互作用领域常用的数据库。最后,我们调查和分析了用于预测蛋白-配体结合位点、配体结合亲和力和结合构象(构象)的机器学习 (ML) 方法,包括经典 ML 算法和最近的深度学习方法。在探讨了蛋白-配体相互作用的这三个方面之间的相关性后,提出应该将它们一并研究。我们预计,我们的综述将有助于探索和开发更准确的基于 ML 的预测策略,以研究蛋白-配体相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab1b/8769895/a845f23b8959/bbab476f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验