Kado Abdalkader Rodi, Konishi Satoshi, Fujita Takuya
Ritsumeikan Global-Innovation Research Organization (R-GIRO), Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
Department of Mechanical Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
Sci Rep. 2025 Feb 19;15(1):6125. doi: 10.1038/s41598-025-90470-w.
The development of cost-effective, flexible, and scalable microfluidic devices is crucial for advancing organ-on-a-chip (OoC) technology for drug discovery and disease modeling applications. In this study, we present a novel 3D-printed flexible microfluidic device (3D-FlexTPU-MFD) fabricated through a one-step fused deposition modeling (FDM) process using thermoplastic polyurethane (TPU) as the printing filament and polyvinyl chloride (PVC) as the bonding substrate. The device's compatibility was evaluated with various cell types, including human primary myoblasts, human primary endothelial cells (HUVEC), and human iPSC-derived optic vesicle (OV) organoids. Myoblasts cultured within the device exhibited high viability, successful differentiation, and the formation of aligned myotube bundles, outperforming conventional well-plate cultures. Additionally, iPSC-derived OV organoids-maintained viability, displayed neurite outgrowth, and sustained expression of the eye marker PAX6. These results demonstrate that the 3D-FlexTPU-MFD effectively supports cell growth, differentiation, and alignment, making it a promising platform for tissue modeling and OoC applications in future.
开发具有成本效益、灵活性和可扩展性的微流控设备对于推进用于药物发现和疾病建模应用的芯片器官(OoC)技术至关重要。在本研究中,我们展示了一种新型的3D打印柔性微流控设备(3D-FlexTPU-MFD),该设备通过一步熔融沉积建模(FDM)工艺制造,使用热塑性聚氨酯(TPU)作为打印细丝,聚氯乙烯(PVC)作为粘结基板。评估了该设备与各种细胞类型的兼容性,包括人原代成肌细胞、人原代内皮细胞(HUVEC)和人诱导多能干细胞衍生的视泡(OV)类器官。在该设备中培养的成肌细胞表现出高活力、成功分化以及形成排列整齐的肌管束,优于传统的孔板培养。此外,诱导多能干细胞衍生的OV类器官保持了活力,显示出神经突生长,并持续表达眼部标记物PAX6。这些结果表明,3D-FlexTPU-MFD有效地支持细胞生长、分化和排列,使其成为未来组织建模和OoC应用的有前途的平台。