基于多尺度组合高效通道注意力模块的皮肤病分类模型
A skin disease classification model based on multi scale combined efficient channel attention module.
作者信息
Liu Hui, Dou Yibo, Wang Kai, Zou Yunmin, Sen Gan, Liu Xiangtao, Li Huling
机构信息
College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi City, 830017, Xinjiang Uygur Autonomous Region, China.
School of Software and Microelectronics, Peking University, Beijing, 102600, China.
出版信息
Sci Rep. 2025 Feb 19;15(1):6116. doi: 10.1038/s41598-025-90418-0.
Skin diseases, a significant category in the medical field, have always been challenging to diagnose and have a high misdiagnosis rate. Deep learning for skin disease classification has considerable value in clinical diagnosis and treatment. This study proposes a skin disease classification model based on multi-scale channel attention. The network architecture of the model consists of three main parts: an input module, four processing blocks, and an output module. Firstly, the model has improved the pyramid segmentation attention module to extract multi-scale features of the image entirely. Secondly, the reverse residual structure is used to replace the residual structure in the backbone network, and the attention module is integrated into the reverse residual structure to achieve better multi-scale feature extraction. Finally, the output module consists of an adaptive average pool and a fully connected layer, which convert the aggregated global features into several categories to generate the final output for the classification task. To verify the performance of the proposed model, this study used two commonly used skin disease datasets, ISIC2019 and HAM10000, for validation. The experimental results showed that the accuracy of this study was 77.6% on the ISIC2019 skin disease series dataset and 88.2% on the HAM10000 skin disease dataset. External validation data was added for evaluation to validate the model further, and the comprehensive evaluation results proved the effectiveness of the proposed model in this paper.
皮肤病是医学领域中的一个重要类别,其诊断一直具有挑战性且误诊率很高。用于皮肤病分类的深度学习在临床诊断和治疗中具有相当大的价值。本研究提出了一种基于多尺度通道注意力的皮肤病分类模型。该模型的网络架构由三个主要部分组成:一个输入模块、四个处理块和一个输出模块。首先,该模型改进了金字塔分割注意力模块,以全面提取图像的多尺度特征。其次,使用反向残差结构替换主干网络中的残差结构,并将注意力模块集成到反向残差结构中,以实现更好的多尺度特征提取。最后,输出模块由自适应平均池化层和全连接层组成,它们将聚合的全局特征转换为多个类别,以生成分类任务的最终输出。为了验证所提出模型的性能,本研究使用了两个常用的皮肤病数据集ISIC2019和HAM10000进行验证。实验结果表明,本研究在ISIC2019皮肤病系列数据集上的准确率为77.6%,在HAM10000皮肤病数据集上的准确率为88.2%。添加外部验证数据进行评估以进一步验证模型,综合评估结果证明了本文所提出模型的有效性。
相似文献
Nan Fang Yi Ke Da Xue Xue Bao. 2025-2-20
Comput Biol Med. 2024-2
引用本文的文献
Diagnostics (Basel). 2025-8-11
本文引用的文献
J Imaging Inform Med. 2025-6
Sensors (Basel). 2021-4-18
Comput Methods Programs Biomed. 2020-10