Suppr超能文献

MobileNet-V2:基于注意力和多尺度特征的增强型皮肤疾病分类

MobileNet-V2: An Enhanced Skin Disease Classification by Attention and Multi-Scale Features.

机构信息

Department of Artificial Intelligence and Machine Learning, Sharnbasva University Kalaburagi, Kalaburagi, Karnataka, India.

Department of Computer Science and Engineering, Sharnbasva University Kalaburagi, Kalaburagi, Karnataka, India.

出版信息

J Imaging Inform Med. 2025 Jun;38(3):1734-1754. doi: 10.1007/s10278-024-01271-y. Epub 2024 Oct 1.

Abstract

The increasing prevalence of skin diseases necessitates accurate and efficient diagnostic tools. This research introduces a novel skin disease classification model leveraging advanced deep learning techniques. The proposed architecture combines the MobileNet-V2 backbone, Squeeze-and-Excitation (SE) blocks, Atrous Spatial Pyramid Pooling (ASPP), and a Channel Attention Mechanism. The model was trained on four diverse datasets such as PH2 dataset, Skin Cancer MNIST: HAM10000 dataset, DermNet. dataset, and Skin Cancer ISIC dataset. Data preprocessing techniques, including image resizing, and normalization, played a crucial role in optimizing model performance. In this paper, the MobileNet-V2 backbone is implemented to extract hierarchical features from the preprocessed dermoscopic images. The multi-scale contextual information is fused by the ASPP model for generating a feature map. The attention mechanisms contributed significantly, enhancing the extraction ability of inter-channel relationships and multi-scale contextual information for enhancing the discriminative power of the features. Finally, the output feature map is converted into probability distribution through the softmax function. The proposed model outperformed several baseline models, including traditional machine learning approaches, emphasizing its superiority in skin disease classification with 98.6% overall accuracy. Its competitive performance with state-of-the-art methods positions it as a valuable tool for assisting dermatologists in early classification. The study also identified limitations and suggested avenues for future research, emphasizing the model's potential for practical implementation in the field of dermatology.

摘要

皮肤病患病率的不断上升使得准确而高效的诊断工具成为必要。本研究引入了一种利用先进深度学习技术的新型皮肤病分类模型。所提出的架构结合了MobileNet-V2主干、挤压激励(SE)模块、空洞空间金字塔池化(ASPP)和通道注意力机制。该模型在四个不同的数据集上进行训练,如PH2数据集、皮肤癌MNIST:HAM10000数据集、DermNet数据集和皮肤癌ISIC数据集。数据预处理技术,包括图像缩放和归一化,在优化模型性能方面发挥了关键作用。在本文中,实现了MobileNet-V2主干以从预处理的皮肤镜图像中提取分层特征。多尺度上下文信息由ASPP模型融合以生成特征图。注意力机制做出了显著贡献,增强了通道间关系和多尺度上下文信息的提取能力,从而增强了特征的判别力。最后,通过softmax函数将输出特征图转换为概率分布。所提出的模型优于几个基线模型,包括传统机器学习方法,以98.6%的总体准确率强调了其在皮肤病分类中的优越性。其与最先进方法的竞争性能使其成为协助皮肤科医生进行早期分类的有价值工具。该研究还确定了局限性并提出了未来研究的途径,强调了该模型在皮肤病学领域实际应用的潜力。

相似文献

1
MobileNet-V2: An Enhanced Skin Disease Classification by Attention and Multi-Scale Features.
J Imaging Inform Med. 2025 Jun;38(3):1734-1754. doi: 10.1007/s10278-024-01271-y. Epub 2024 Oct 1.
2
Attention-aware Deep Learning Models for Dermoscopic Image Classification for Skin Disease Diagnosis.
Curr Med Imaging. 2025;21:e15734056332443. doi: 10.2174/0115734056332443241129113146.
3
Attention Residual Learning for Skin Lesion Classification.
IEEE Trans Med Imaging. 2019 Sep;38(9):2092-2103. doi: 10.1109/TMI.2019.2893944. Epub 2019 Jan 21.
5
Multi-scale feature fusion and class weight loss for skin lesion classification.
Comput Biol Med. 2024 Jun;176:108594. doi: 10.1016/j.compbiomed.2024.108594. Epub 2024 May 14.
8
Learning from dermoscopic images in association with clinical metadata for skin lesion segmentation and classification.
Comput Biol Med. 2023 Jan;152:106321. doi: 10.1016/j.compbiomed.2022.106321. Epub 2022 Nov 17.
10
LAMA: Lesion-Aware Mixup Augmentation for Skin Lesion Segmentation.
J Imaging Inform Med. 2024 Aug;37(4):1812-1823. doi: 10.1007/s10278-024-01000-5. Epub 2024 Feb 26.

引用本文的文献

本文引用的文献

1
Enhanced Deep Learning Approach for Accurate Eczema and Psoriasis Skin Detection.
Sensors (Basel). 2023 Aug 21;23(16):7295. doi: 10.3390/s23167295.
2
A Multi-Stage Faster RCNN-Based iSPLInception for Skin Disease Classification Using Novel Optimization.
J Digit Imaging. 2023 Oct;36(5):2210-2226. doi: 10.1007/s10278-023-00848-3. Epub 2023 Jun 15.
4
An Enhanced Transfer Learning Based Classification for Diagnosis of Skin Cancer.
Diagnostics (Basel). 2022 Jul 5;12(7):1628. doi: 10.3390/diagnostics12071628.
5
Automatic skin disease diagnosis using deep learning from clinical image and patient information.
Skin Health Dis. 2021 Nov 25;2(1):e81. doi: 10.1002/ski2.81. eCollection 2022 Mar.
6
A multimodal transformer to fuse images and metadata for skin disease classification.
Vis Comput. 2022 May 5:1-13. doi: 10.1007/s00371-022-02492-4.
7
Deep Learning Approaches for Prognosis of Automated Skin Disease.
Life (Basel). 2022 Mar 15;12(3):426. doi: 10.3390/life12030426.
8
Skin lesion classification system using a K-nearest neighbor algorithm.
Vis Comput Ind Biomed Art. 2022 Mar 1;5(1):7. doi: 10.1186/s42492-022-00103-6.
9
Artificial intelligence in dermatology for the clinician.
Clin Dermatol. 2021 Jul-Aug;39(4):667-672. doi: 10.1016/j.clindermatol.2021.03.012. Epub 2021 Mar 19.
10
A convolutional neural network trained with dermoscopic images of psoriasis performed on par with 230 dermatologists.
Comput Biol Med. 2021 Dec;139:104924. doi: 10.1016/j.compbiomed.2021.104924. Epub 2021 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验