Suppr超能文献

利用卷积神经网络中改进的池化函数自动检测和分类糖尿病视网膜病变

Automatic Detection and Classification of Diabetic Retinopathy Using the Improved Pooling Function in the Convolution Neural Network.

作者信息

Bhimavarapu Usharani, Chintalapudi Nalini, Battineni Gopi

机构信息

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India.

Clinical Research Centre, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy.

出版信息

Diagnostics (Basel). 2023 Aug 5;13(15):2606. doi: 10.3390/diagnostics13152606.

Abstract

Diabetic retinopathy (DR) is an eye disease associated with diabetes that can lead to blindness. Early diagnosis is critical to ensure that patients with diabetes are not affected by blindness. Deep learning plays an important role in diagnosing diabetes, reducing the human effort to diagnose and classify diabetic and non-diabetic patients. The main objective of this study was to provide an improved convolution neural network (CNN) model for automatic DR diagnosis from fundus images. The pooling function increases the receptive field of convolution kernels over layers. It reduces computational complexity and memory requirements because it reduces the resolution of feature maps while preserving the essential characteristics required for subsequent layer processing. In this study, an improved pooling function combined with an activation function in the ResNet-50 model was applied to the retina images in autonomous lesion detection with reduced loss and processing time. The improved ResNet-50 model was trained and tested over the two datasets (i.e., APTOS and Kaggle). The proposed model achieved an accuracy of 98.32% for APTOS and 98.71% for Kaggle datasets. It is proven that the proposed model has produced greater accuracy when compared to their state-of-the-art work in diagnosing DR with retinal fundus images.

摘要

糖尿病性视网膜病变(DR)是一种与糖尿病相关的眼部疾病,可导致失明。早期诊断对于确保糖尿病患者不受失明影响至关重要。深度学习在糖尿病诊断中发挥着重要作用,减少了诊断和分类糖尿病患者与非糖尿病患者的人力。本研究的主要目标是提供一种改进的卷积神经网络(CNN)模型,用于从眼底图像中自动诊断DR。池化函数增加了卷积核在各层上的感受野。它降低了计算复杂度和内存需求,因为它在保留后续层处理所需基本特征的同时降低了特征图的分辨率。在本研究中,将改进的池化函数与ResNet-50模型中的激活函数相结合,应用于视网膜图像的自主病变检测,减少了损失和处理时间。改进的ResNet-50模型在两个数据集(即APTOS和Kaggle)上进行了训练和测试。所提出的模型在APTOS数据集上的准确率达到98.32%,在Kaggle数据集上的准确率达到98.71%。事实证明,与使用视网膜眼底图像诊断DR的现有最先进工作相比,所提出的模型具有更高的准确率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验