Suppr超能文献

基于机器学习的多组学框架作为早期帕金森病认知障碍进展的预测指标

A Multi-omics Framework Based on Machine Learning as a Predictor of Cognitive Impairment Progression in Early Parkinson's Disease.

作者信息

Luo Yang, Xiang YaQin, Liu JiaBin, Hu YuXuan, Guo JiFeng

机构信息

Department of Neurology, XiangYa Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, China.

National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.

出版信息

Neurol Ther. 2025 Apr;14(2):643-658. doi: 10.1007/s40120-025-00716-y. Epub 2025 Feb 22.

Abstract

INTRODUCTION

Cognitive impairment (CI) is a common non-motor symptom of Parkinson's disease (PD). However, the diagnosis and prediction of CI progression in PD remain challenging. We aimed to explore a multi-omics framework based on machine learning integrating comprehensive radiomics, cerebrospinal fluid biomarkers, and genetics information to identify CI progression in early PD.

METHODS

Patients were first diagnosed with PD without CI at baseline. According to whether CI progressed within 5 years, patients were divided into two groups: PD without CI and PD with CI. Radiomics signatures were extracted from patients' T1-weighted MRI. We used machine learning methods to construct radiomics, hybrid, and multi-omics models in the training set and validated the models in the testing set.

RESULT

In the two groups, we found 7, 23, and 25 radiomics signatures with significant differences in the parietal, temporal, and frontal lobes, respectively. The radiomics model using the 25 signatures of the frontal lobe had an accuracy of 0.833 and an AUC (area under the curve) of 0.879 to predict CI progression. In addition, the hybrid model fused with the cerebrospinal fluid Aβ level had an accuracy of 0.867 and an AUC of 0.916. In our study, the multi-omics model showed the best predictive performance. The accuracy of the multi-omics model was 0.900, and the average AUC value after five-fold cross-validation was 0.928.

CONCLUSION

Radiomics signatures have a recognition effect in the CI progression in early PD. Multi-omics frameworks combining radiomics, cerebrospinal fluid biomarkers, and genetic information may be a potential predictor of CI progression in PD.

摘要

引言

认知障碍(CI)是帕金森病(PD)常见的非运动症状。然而,PD中CI进展的诊断和预测仍然具有挑战性。我们旨在探索一种基于机器学习的多组学框架,整合综合放射组学、脑脊液生物标志物和遗传学信息,以识别早期PD中的CI进展。

方法

患者在基线时首次被诊断为无CI的PD。根据CI在5年内是否进展,将患者分为两组:无CI的PD和有CI的PD。从患者的T1加权MRI中提取放射组学特征。我们使用机器学习方法在训练集中构建放射组学、混合和多组学模型,并在测试集中对模型进行验证。

结果

在两组中,我们分别在顶叶、颞叶和额叶发现了7个、23个和25个具有显著差异的放射组学特征。使用额叶的25个特征的放射组学模型预测CI进展的准确率为0.833,曲线下面积(AUC)为0.879。此外,与脑脊液Aβ水平融合的混合模型准确率为0.867,AUC为0.916。在我们的研究中,多组学模型显示出最佳的预测性能。多组学模型的准确率为0.900,五折交叉验证后的平均AUC值为0.928。

结论

放射组学特征在早期PD的CI进展中具有识别作用。结合放射组学、脑脊液生物标志物和遗传信息的多组学框架可能是PD中CI进展的潜在预测指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a811/11906927/e6d7970bfc52/40120_2025_716_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验