Suppr超能文献

基于机器学习和深度学习的上肢康复肌电控制系统:利用脑电图和肌电图信号的系统评价

Machine Learning- and Deep Learning-Based Myoelectric Control System for Upper Limb Rehabilitation Utilizing EEG and EMG Signals: A Systematic Review.

作者信息

Zaim Tala, Abdel-Hadi Sara, Mahmoud Rana, Khandakar Amith, Rakhtala Seyed Mehdi, Chowdhury Muhammad E H

机构信息

Department of Electrical Engineering, Qatar University, Doha 2713, Qatar.

School of Engineering, University of the West of England, Bristol BS16 1QY, UK.

出版信息

Bioengineering (Basel). 2025 Feb 3;12(2):144. doi: 10.3390/bioengineering12020144.

Abstract

Upper limb disabilities, often caused by conditions such as stroke or neurological disorders, severely limit an individual's ability to perform essential daily tasks, leading to a significant reduction in quality of life. The development of effective rehabilitation technologies is crucial to restoring motor function and improving patient outcomes. This systematic review examines the application of machine learning and deep learning techniques in myoelectric-controlled systems for upper limb rehabilitation, focusing on the use of electroencephalography and electromyography signals. By integrating non-invasive signal acquisition methods with advanced computational models, the review highlights how these technologies can enhance the accuracy and efficiency of rehabilitation devices. A comprehensive search of literature published between January 2015 and July 2024 led to the selection of fourteen studies that met the inclusion criteria. These studies showcase various approaches in decoding motor intentions and controlling assistive devices, with models such as Long Short-Term Memory Networks, Support Vector Machines, and Convolutional Neural Networks showing notable improvements in control precision. However, challenges remain in terms of model robustness, computational complexity, and real-time applicability. This systematic review aims to provide researchers with a deeper understanding of the current advancements and challenges in this field, guiding future research efforts to overcome these barriers and facilitate the transition of these technologies from experimental settings to practical, real-world applications.

摘要

上肢残疾通常由中风或神经疾病等状况引起,严重限制了个人完成基本日常任务的能力,导致生活质量大幅下降。开发有效的康复技术对于恢复运动功能和改善患者预后至关重要。本系统综述考察了机器学习和深度学习技术在用于上肢康复的肌电控制系统中的应用,重点关注脑电图和肌电图信号的使用。通过将非侵入性信号采集方法与先进的计算模型相结合,该综述突出了这些技术如何能够提高康复设备的准确性和效率。对2015年1月至2024年7月发表的文献进行全面检索后,筛选出了14项符合纳入标准的研究。这些研究展示了在解码运动意图和控制辅助设备方面的各种方法,长短期记忆网络、支持向量机和卷积神经网络等模型在控制精度方面有显著提高。然而,在模型鲁棒性、计算复杂性和实时适用性方面仍然存在挑战。本系统综述旨在让研究人员更深入地了解该领域的当前进展和挑战,指导未来的研究工作以克服这些障碍,并促进这些技术从实验环境向实际的现实世界应用的转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bce/11851773/459d4ec0d326/bioengineering-12-00144-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验