文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

乳制品废水促进()中的混合营养代谢:对生物质组成、藻蓝蛋白含量和脂肪酸甲酯谱的影响

Dairy Wastewaters to Promote Mixotrophic Metabolism in () : Effect on Biomass Composition, Phycocyanin Content, and Fatty Acid Methyl Ester Profile.

作者信息

Baraldi Luca, Usai Luca, Torre Serenella, Fais Giacomo, Casula Mattia, Dessi Debora, Nieri Paola, Concas Alessandro, Lutzu Giovanni Antonio

机构信息

Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41123 Modena, Italy.

Teregroup Srl, Via David Livingstone 37, 41123 Modena, Italy.

出版信息

Life (Basel). 2025 Jan 26;15(2):184. doi: 10.3390/life15020184.


DOI:10.3390/life15020184
PMID:40003594
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11856459/
Abstract

This study explores the mixotrophic cultivation of using dairy byproducts, specifically scotta whey (SW), buttermilk wastewater (BMW), and dairy wastewater (DWW), to promote biomass production and enhance the composition of bioactive compounds. By assessing various concentrations (1%, 2%, and 4% v v) of these byproducts in a modified growth medium, this study aims to evaluate their effect on growth, phycocyanin (C-PC) content, and fatty acid methyl ester (FAME) profiles. The results show that the optimal biomass production was achieved with 2% scotta and dairy wastewater, reaching maximum concentrations of 3.30 g L and 3.19 g L, respectively. Mixotrophic cultivation led to increased C-PC yields, especially in buttermilk and dairy wastewater treatments, highlighting the potential for producing valuable pigments. Additionally, the FAME profiles indicated minimal changes compared to the control, with oleic and γ-linolenic acids being dominant in mixotrophic conditions. These findings support the viability of utilizing dairy byproducts for sustainable cultivation, contributing to a circular bioeconomy while producing bioactive compounds of nutritional and commercial interest.

摘要

本研究探索了利用乳制品副产品,特别是斯科塔乳清(SW)、酪乳废水(BMW)和乳制品废水(DWW)进行混合营养培养,以促进生物质生产并增强生物活性化合物的组成。通过在改良生长培养基中评估这些副产品的各种浓度(1%、2%和4% v/v),本研究旨在评估它们对[藻类名称未给出]生长、藻蓝蛋白(C-PC)含量和脂肪酸甲酯(FAME)谱的影响。结果表明,使用2%的斯科塔乳清和乳制品废水可实现最佳生物质生产,分别达到最大浓度3.30 g/L和3.19 g/L。混合营养培养导致C-PC产量增加,特别是在酪乳和乳制品废水处理中,突出了生产有价值色素的潜力。此外,FAME谱表明与对照相比变化最小,在混合营养条件下油酸和γ-亚麻酸占主导地位。这些发现支持了利用乳制品副产品进行可持续[藻类名称未给出]培养的可行性,有助于循环生物经济,同时生产具有营养和商业价值的生物活性化合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d973/11856459/3618bb4b7b3b/life-15-00184-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d973/11856459/6469b6db54c8/life-15-00184-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d973/11856459/3f0116c72892/life-15-00184-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d973/11856459/379ac971ebba/life-15-00184-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d973/11856459/67f7e8070164/life-15-00184-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d973/11856459/f61e6ff2a861/life-15-00184-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d973/11856459/14ada5888297/life-15-00184-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d973/11856459/3618bb4b7b3b/life-15-00184-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d973/11856459/6469b6db54c8/life-15-00184-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d973/11856459/3f0116c72892/life-15-00184-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d973/11856459/379ac971ebba/life-15-00184-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d973/11856459/67f7e8070164/life-15-00184-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d973/11856459/f61e6ff2a861/life-15-00184-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d973/11856459/14ada5888297/life-15-00184-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d973/11856459/3618bb4b7b3b/life-15-00184-g007.jpg

相似文献

[1]
Dairy Wastewaters to Promote Mixotrophic Metabolism in () : Effect on Biomass Composition, Phycocyanin Content, and Fatty Acid Methyl Ester Profile.

Life (Basel). 2025-1-26

[2]
Mixotrophic Cultivation of (Spirulina) under Salt Stress: Effect on Biomass Composition, FAME Profile and Phycocyanin Content.

Mar Drugs. 2024-8-24

[3]
Mixotrophic cultivation of Spirulina platensis in dairy wastewater: Effects on the production of biomass, biochemical composition and antioxidant capacity.

PLoS One. 2019-10-24

[4]
Cultivation of blue green algae (Arthrospira platensis Gomont, 1892) in wastewater for biodiesel production.

Chemosphere. 2023-9

[5]
Phototrophic cultivation of NaCl-tolerant mutant of Spirulina platensis for enhanced C-phycocyanin production under optimized culture conditions and its dynamic modeling.

J Phycol. 2018-2

[6]
Optimization Growth of Spirulina (Arthrospira) Platensis in Photobioreactor Under Varied Nitrogen Concentration for Maximized Biomass, Carotenoids and Lipid Contents.

Recent Pat Food Nutr Agric. 2020

[7]
Characterization of additional zinc ions on the growth, biochemical composition and photosynthetic performance from Spirulina platensis.

Bioresour Technol. 2018-9-1

[8]
Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis.

Water Res. 2017-10-28

[9]
Mixotrophic Cultivation of in Cheese Whey Effluents to Enhance Biomass and Exopolysaccharides (EPS) Production: Biochemical and Functional Insights.

Mar Drugs. 2025-3-11

[10]
Fed-batch strategy for enhancing cell growth and C-phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation.

Bioresour Technol. 2014-12-30

引用本文的文献

[1]
Evaluation of Growth Performance, Biochemical Composition, and Polyhydroxyalkanoates Production of Four Cyanobacterial Species Grown in Cheese Whey.

Microorganisms. 2025-5-19

[2]
Biogas Digestate and Its Electrodialysis Concentrate as Alternative Media Composition for Cultivation: A Study on Nutrient Recovery from Dairy Wastewater.

Bioengineering (Basel). 2025-4-26

本文引用的文献

[1]
Comparative Analysis of Pretreatment Methods for Fruit Waste Valorization in Cultivation: Impacts on Biomass, β-1,3-Glucan Production, and Photosynthetic Efficiency.

Foods. 2024-10-28

[2]
Mixotrophic Cultivation of (Spirulina) under Salt Stress: Effect on Biomass Composition, FAME Profile and Phycocyanin Content.

Mar Drugs. 2024-8-24

[3]
Ceramides-Emerging Biomarkers of Lipotoxicity in Obesity, Diabetes, Cardiovascular Diseases, and Inflammation.

Diseases. 2024-8-23

[4]
Microalgae-mediated bioremediation: current trends and opportunities-a review.

Arch Microbiol. 2024-7-5

[5]
Nutraceutical Features of the Phycobiliprotein C-Phycocyanin: Evidence from ().

Nutrients. 2024-6-3

[6]
Enhancement of biomass productivity and biochemical composition of alkaliphilic microalgae by mixotrophic cultivation using cheese whey for biofuel production.

Environ Sci Pollut Res Int. 2024-6

[7]
A comprehensive review on the heterotrophic production of bioactive compounds by microalgae.

World J Microbiol Biotechnol. 2024-5-22

[8]
Beneficial Effects of Supplementation in the Management of Cardiovascular Diseases.

Nutrients. 2024-2-25

[9]
Microalgae cultivation: closing the yield gap from laboratory to field scale.

Front Bioeng Biotechnol. 2024-2-14

[10]
Phycobiliproteins from microalgae: research progress in sustainable production and extraction processes.

Biotechnol Biofuels Bioprod. 2023-11-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索