Wang Jia, Wang Xiaojing, Yao Chengpeng, Xu Jizhe, Wang Dongdong, Zhao Xin, Li Xiaohui, Liu Junyang, Hong Wenjing
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
Langmuir. 2025 Mar 11;41(9):5705-5735. doi: 10.1021/acs.langmuir.4c04865. Epub 2025 Feb 26.
Noncovalent interactions, both between molecules and at the molecule-electrode interfaces, play essential roles in enabling dynamic and reversible molecular behaviors, including self-assembly, recognition, and various functional properties. In macroscopic ensemble systems, these interfacial phenomena often exhibit emergent properties that arise from the synergistic interplay of multiple noncovalent interactions. However, at the single-molecule scale, precisely distinguishing, characterizing, and controlling individual noncovalent interactions remains a significant challenge. Molecular electronics offers a unique platform for constructing and characterizing both intermolecular and molecule-electrode interfaces governed by noncovalent interactions, enabling the isolated study of these fundamental interactions. Furthermore, precise control over these interfaces through noncovalent interactions facilitates the development of enhanced molecular devices. This review examines the characterization of interfacial phenomena arising from noncovalent interactions through single-molecule electrical measurements and explores their applications in molecular devices. We begin by discussing the construction of stable molecular junctions through intermolecular and molecule-electrode interfaces, followed by an analysis of electron tunneling mechanisms mediated by key noncovalent interactions and their modulation methods. We then investigate how noncovalent interactions enhance device sensitivity, stability, and functionality, establishing design principles for next-generation molecular electronics. We have also explored the potential of noncovalent interactions for bottom-up self-assembled molecular devices. The review concludes by addressing the opportunities and challenges in scaling up molecular electronics through noncovalent interactions.
分子之间以及分子与电极界面之间的非共价相互作用,在实现动态和可逆的分子行为(包括自组装、识别和各种功能特性)中起着至关重要的作用。在宏观集合系统中,这些界面现象通常表现出由多种非共价相互作用的协同相互作用产生的涌现特性。然而,在单分子尺度上,精确区分、表征和控制单个非共价相互作用仍然是一项重大挑战。分子电子学为构建和表征受非共价相互作用支配的分子间和分子-电极界面提供了一个独特的平台,从而能够对这些基本相互作用进行单独研究。此外,通过非共价相互作用对这些界面进行精确控制有助于开发增强型分子器件。本文综述通过单分子电学测量研究了由非共价相互作用引起的界面现象的表征,并探讨了它们在分子器件中的应用。我们首先讨论通过分子间和分子-电极界面构建稳定的分子结,接着分析由关键非共价相互作用介导的电子隧穿机制及其调制方法。然后,我们研究非共价相互作用如何提高器件的灵敏度、稳定性和功能性,确立下一代分子电子学的设计原则。我们还探索了非共价相互作用在自下而上的自组装分子器件中的潜力。本文综述最后讨论了通过非共价相互作用扩大分子电子学规模时面临的机遇和挑战。