Derathé Arthur, Reche Fabian, Guy Sylvain, Charrière Katia, Trilling Bertrand, Jannin Pierre, Moreau-Gaudry Alexandre, Gibaud Bernard, Voros Sandrine
Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, INSERM, TIMC, 38000, Grenoble, France.
Department of digestive surgery, CHU de Grenoble, Grenoble, France.
Sci Data. 2025 Feb 26;12(1):342. doi: 10.1038/s41597-025-04588-7.
In Surgical Data Science (SDS), there is an increasing demand for large, realistic annotated datasets to facilitate the development of machine learning techniques. However, in laparoscopic surgery, most publicly available datasets focus on low-granularity procedural annotations (such as phases or steps) and image segmentation of instruments or specific organs, often using animal models that lack clinical realism. Furthermore, annotation variability is seldom evaluated. In this work, we compiled 30 sleeve gastrectomy procedures and performed three levels of annotations for a specific step of this procedure (the fundus dissection): a procedural annotation of fine-grained activities, a semantic segmentation of the laparoscopic images, and the assessment of a surgical skill, specifically the quality of exposition of the surgical scene. We also conducted a comprehensive annotation variability analysis, highlighting the complexity of these tasks and providing a baseline for evaluating machine learning models. The dataset is publicly available and serves as a valuable resource for advancing SDS research.
在外科数据科学(SDS)领域,对于大型、真实的带注释数据集的需求日益增长,以促进机器学习技术的发展。然而,在腹腔镜手术中,大多数公开可用的数据集侧重于低粒度的手术过程注释(如阶段或步骤)以及器械或特定器官的图像分割,通常使用缺乏临床真实性的动物模型。此外,注释的可变性很少得到评估。在这项工作中,我们汇编了30例袖状胃切除术的手术过程,并对该手术的一个特定步骤(胃底解剖)进行了三个层次的注释:细粒度活动的手术过程注释、腹腔镜图像的语义分割以及一项手术技能的评估,具体而言是手术场景暴露质量的评估。我们还进行了全面的注释可变性分析,突出了这些任务的复杂性,并为评估机器学习模型提供了一个基线。该数据集已公开可用,是推进SDS研究的宝贵资源。