Yang Jae-Soon, Chung Myung-Kun, Yoo Jae-Young, Kim Min-Uk, Kim Beom-Jun, Jo Min-Seung, Kim Sung-Ho, Yoon Jun-Bo
School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Department of Semiconductor Convergence Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea.
Nat Commun. 2025 Feb 27;16(1):2024. doi: 10.1038/s41467-025-57232-8.
Pressure sensors provide intuitive and easy-to-use information, making them essential for Human-Machine Interface (HMI) applications. However, capacitive pressure sensors, although prevalent in industrial applications, suffer from critical vulnerabilities to external interferences like water droplets and proximity. Without addressing these issues, pressure sensors can never be effectively utilized in various real-world applications. This paper addresses this critical issue by identifying fringe fields as the primary cause of interference and proposing a nanogap structured capacitive pressure sensor. By reducing the electrode gaps to hundreds of nanometers, our sensor effectively mitigates fringe field effects, ensuring reliable pressure detection and high spatial resolution. We demonstrate the sensor's capabilities through wireless applications such as an artificial pressure sensing system and a force touch pad system, both showcasing exceptional resilience and accuracy. This innovation paves the way for robust, interference-free pressure sensors, significantly advancing HMI technology.
压力传感器提供直观且易于使用的信息,使其成为人机界面(HMI)应用中必不可少的部件。然而,电容式压力传感器尽管在工业应用中很普遍,但却极易受到水滴和接近等外部干扰的影响。如果不解决这些问题,压力传感器就永远无法在各种实际应用中得到有效利用。本文通过将边缘场确定为干扰的主要原因并提出一种纳米间隙结构的电容式压力传感器来解决这一关键问题。通过将电极间隙减小到数百纳米,我们的传感器有效地减轻了边缘场效应,确保了可靠的压力检测和高空间分辨率。我们通过无线应用展示了该传感器的性能,如人工压力传感系统和力触控板系统,二者均展现出卓越的抗干扰能力和准确性。这一创新为坚固、无干扰的压力传感器铺平了道路,极大地推动了人机界面技术的发展。