Suppr超能文献

楼梯攀爬过程中髋关节外骨骼辅助的人在回路优化

Human-in-the-Loop Optimization of Hip Exoskeleton Assistance During Stair Climbing.

作者信息

Park Dongho, An Jimin, Lee Dawit, Kang Inseung, Young Aaron J

出版信息

IEEE Trans Biomed Eng. 2025 Jul;72(7):2147-2156. doi: 10.1109/TBME.2025.3536516.

Abstract

OBJECTIVE

This study applies human-in-the-loop optimization to identify optimal hip exoskeleton assistance patterns for stair climbing.

METHODS

Ten participants underwent optimization to individualize hip flexion and extension assistance, followed by a validation comparing optimized assistance (OPT) to biological hip moment-based assistance (BIO), no assistance (No-Assist), and no exoskeleton (No-Exo) conditions.

RESULTS

OPT reduced metabolic cost by 4.5% compared to No-Exo, 11.44% compared to No-Assist, and 5.02% compared to BIO, demonstrating the effectiveness of the optimization approach. Statistical analysis revealed distinct characteristics in optimal assistance timing and magnitude that deviated systematically from biological hip moment patterns. Compared to BIO, OPT exhibited later peak flexion timing (76.4 $\pm$ 3.7% vs 65.0%), shorter flexion duration (29.2 $\pm$ 3.6% vs 40.0%), later peak extension timing (26.7 $\pm$ 3.8% vs 20.0% of gait cycle), and higher peak flexion magnitude (11.1 $\pm$ 1.5 Nm vs 10.0 Nm). While individual optimal assistance profiles varied across participants, comparison between individually optimized parameters and the best subject-independent parameters identified through post-hoc analysis showed consistency. On average, metabolic rate convergence was achieved after 18 iterations, while most exoskeleton control parameters did not reach our convergence criteria within 20 iterations.

CONCLUSION

These findings demonstrate that human-in-the-loop optimization can effectively identify task-specific assistance patterns for stair climbing, while the consistency between individual and subject-independent parameters suggests the potential for developing generalized assistance strategies. The systematic differences between optimized and biological moment-based assistance underscore the fundamental distinctions between biological torque-based control and optimal control for exoskeleton assistance.

摘要

目的

本研究应用人工参与优化方法来确定爬楼梯时髋部外骨骼的最佳辅助模式。

方法

10名参与者接受优化以个性化髋部屈伸辅助,随后进行验证,将优化后的辅助(OPT)与基于生物髋关节力矩的辅助(BIO)、无辅助(无辅助)和无外骨骼(无外骨骼)条件进行比较。

结果

与无外骨骼相比,OPT使代谢成本降低了4.5%,与无辅助相比降低了11.44%,与BIO相比降低了5.02%,证明了优化方法的有效性。统计分析显示,最佳辅助时机和幅度具有明显特征,与生物髋关节力矩模式有系统性偏差。与BIO相比,OPT表现出更晚的屈曲峰值时机(76.4±3.7%对65.0%)、更短的屈曲持续时间(29.2±3.6%对40.0%)、更晚的伸展峰值时机(步态周期的26.7±3.8%对20.0%)以及更高的屈曲峰值幅度(11.1±1.5牛米对10.0牛米)。虽然个体的最佳辅助曲线因参与者而异,但通过事后分析确定的个体优化参数与最佳独立于个体的参数之间的比较显示出一致性。平均而言,18次迭代后实现了代谢率收敛,而大多数外骨骼控制参数在20次迭代内未达到我们的收敛标准。

结论

这些发现表明,人工参与优化可以有效地确定爬楼梯时特定任务的辅助模式,而个体参数与独立于个体的参数之间的一致性表明了开发通用辅助策略的潜力。优化后的辅助与基于生物力矩的辅助之间的系统性差异强调了基于生物扭矩的控制与外骨骼辅助的最优控制之间的根本区别。

相似文献

10
Optimizing Locomotor Task Sets for Training a Biological Joint Moment Estimator.
IEEE Int Conf Rehabil Robot. 2025 May;2025:1518-1523. doi: 10.1109/ICORR66766.2025.11063074.

本文引用的文献

1
On human-in-the-loop optimization of human-robot interaction.在人机交互的人机闭环优化。
Nature. 2024 Sep;633(8031):779-788. doi: 10.1038/s41586-024-07697-2. Epub 2024 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验