Suppr超能文献

使用由骨盆区域的伪锥束计算机断层扫描(CBCT)条件化的去噪扩散概率模型来改善锥束计算机断层扫描(CBCT)图像质量。

Cone-beam computed tomography (CBCT) image-quality improvement using a denoising diffusion probabilistic model conditioned by pseudo-CBCT of pelvic regions.

作者信息

Hattori Masayuki, Chai Hongbo, Hiraka Toshitada, Suzuki Koji, Yuasa Tetsuya

机构信息

Graduate School of Science and Engineering, Yamagata University, Yonezawa, 992-8510, Japan.

Department of Radiology, Yamagata University Hospital, Yamagata, 990-9585, Japan.

出版信息

Radiol Phys Technol. 2025 Jun;18(2):425-438. doi: 10.1007/s12194-025-00892-4. Epub 2025 Mar 4.

Abstract

Cone-beam computed tomography (CBCT) is widely used in radiotherapy to image patient configuration before treatment but its image quality is lower than planning CT due to scattering, motion, and reconstruction methods. This reduces the accuracy of Hounsfield units (HU) and limits its use in adaptive radiation therapy (ART). However, synthetic CT (sCT) generation using deep learning methods for CBCT intensity correction faces challenges due to deformation. To address these issues, we propose enhancing CBCT quality using a conditional denoising diffusion probability model (CDDPM), which is trained on pseudo-CBCT created by adding pseudo-scatter to planning CT. The CDDPM transforms CBCT into high-quality sCT, improving HU accuracy while preserving anatomical configuration. The performance evaluation of the proposed sCT showed a reduction in mean absolute error (MAE) from 81.19 HU for CBCT to 24.89 HU for the sCT. Peak signal-to-noise ratio (PSNR) improved from 31.20 dB for CBCT to 33.81 dB for the sCT. The Dice and Jaccard coefficients between CBCT and sCT for the colon, prostate, and bladder ranged from 0.69 to 0.91. When compared to other deep learning models, the proposed sCT outperformed them in terms of accuracy and anatomical preservation. The dosimetry analysis for prostate cancer revealed a dose error of over 10% with CBCT but nearly 0% with the sCT. Gamma pass rates for the proposed sCT exceeded 90% for all dose criteria, indicating high agreement with CT-based dose distributions. These results show that the proposed sCT improves image quality, dosimetry accuracy, and treatment planning, advancing ART for pelvic cancer.

摘要

锥形束计算机断层扫描(CBCT)在放射治疗中被广泛用于在治疗前对患者的形态进行成像,但其图像质量由于散射、运动和重建方法等因素低于计划CT。这降低了亨氏单位(HU)的准确性,并限制了其在自适应放射治疗(ART)中的应用。然而,使用深度学习方法进行CBCT强度校正以生成合成CT(sCT)时,由于变形而面临挑战。为了解决这些问题,我们提出使用条件去噪扩散概率模型(CDDPM)来提高CBCT质量,该模型在通过向计划CT添加伪散射而创建的伪CBCT上进行训练。CDDPM将CBCT转换为高质量的sCT,在保留解剖结构的同时提高HU准确性。对所提出的sCT的性能评估表明,平均绝对误差(MAE)从CBCT的81.19 HU降低到sCT的24.89 HU。峰值信噪比(PSNR)从CBCT的31.20 dB提高到sCT的33.81 dB。结肠、前列腺和膀胱的CBCT与sCT之间的骰子系数和杰卡德系数在0.69至0.91之间。与其他深度学习模型相比,所提出的sCT在准确性和解剖结构保留方面表现更优。前列腺癌的剂量学分析显示,使用CBCT时剂量误差超过10%,而使用sCT时几乎为0%。对于所有剂量标准,所提出的sCT的伽马通过率超过90%,表明与基于CT的剂量分布高度一致。这些结果表明,所提出的sCT提高了图像质量、剂量学准确性和治疗计划,推动了盆腔癌的ART发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验