Suppr超能文献

一种用于转录基因调控网络推断的自注意力驱动深度学习框架。

A self-attention-driven deep learning framework for inference of transcriptional gene regulatory networks.

作者信息

Liu Yong, Zhong Le, Yan Bin, Chen Zhuobin, Yu Yanjia, Yu Dan, Qin Jing, Wang Junwen

机构信息

College of Electronic Information, Guangxi Minzu University, 188 East University Road, Nanning, Guangxi, 530006, China.

Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR, China.

出版信息

Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae639.

Abstract

The interactions between transcription factors (TFs) and the target genes could provide a basis for constructing gene regulatory networks (GRNs) for mechanistic understanding of various biological complex processes. From gene expression data, particularly single-cell transcriptomic data containing rich cell-to-cell variations, it is highly desirable to infer TF-gene interactions (TGIs) using deep learning technologies. Numerous models or software including deep learning-based algorithms have been designed to identify transcriptional regulatory relationships between TFs and the downstream genes. However, these methods do not significantly improve predictions of TGIs due to some limitations regarding constructing underlying interactive structures linking regulatory components. In this study, we introduce a deep learning framework, DeepTGI, that encodes gene expression profiles from single-cell and/or bulk transcriptomic data and predicts TGIs with high accuracy. Our approach could fuse the features extracted from Auto-encoder with self-attention mechanism and other networks and could transform multihead attention modules to define representative features. By comparing it with other models or methods, DeepTGI exhibits its superiority to identify more potential TGIs and to reconstruct the GRNs and, therefore, could provide broader perspectives for discovery of more biological meaningful TGIs and for understanding transcriptional gene regulatory mechanisms.

摘要

转录因子(TFs)与靶基因之间的相互作用可为构建基因调控网络(GRNs)提供基础,以便从机制上理解各种生物复杂过程。从基因表达数据,特别是包含丰富细胞间差异的单细胞转录组数据中,非常需要使用深度学习技术来推断TF-基因相互作用(TGIs)。已经设计了许多模型或软件,包括基于深度学习的算法,来识别TFs与下游基因之间的转录调控关系。然而,由于在构建连接调控成分的潜在交互结构方面存在一些局限性,这些方法并没有显著提高TGIs的预测能力。在本研究中,我们引入了一个深度学习框架DeepTGI,它对单细胞和/或批量转录组数据中的基因表达谱进行编码,并以高精度预测TGIs。我们的方法可以将从自动编码器提取的特征与自注意力机制和其他网络融合,并可以转换多头注意力模块以定义代表性特征。通过与其他模型或方法进行比较,DeepTGI在识别更多潜在TGIs和重建GRNs方面表现出其优越性,因此可以为发现更多具有生物学意义的TGIs和理解转录基因调控机制提供更广阔的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f332/11647272/f91853d0e8c3/bbae639f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验