Suppr超能文献

一种用于肾上腺分割的新型管道:将混合后处理技术与深度学习相结合。

A Novel Pipeline for Adrenal Gland Segmentation: Integration of a Hybrid Post-Processing Technique with Deep Learning.

作者信息

Fayemiwo Michael, Gardiner Bryan, Harkin Jim, McDaid Liam, Prakash Punit, Dennedy Michael

机构信息

School of Computing, Engineering, and Intelligent Systems, Ulster University, Londonderry, Northern Ireland, UK.

Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA.

出版信息

J Imaging Inform Med. 2025 Mar 4. doi: 10.1007/s10278-025-01449-y.

Abstract

Accurate segmentation of adrenal glands from CT images is essential for enhancing computer-aided diagnosis and surgical planning. However, the small size, irregular shape, and proximity to surrounding tissues make this task highly challenging. This study introduces a novel pipeline that significantly improves the segmentation of left and right adrenal glands by integrating advanced pre-processing techniques and a robust post-processing framework. Utilising a 2D UNet architecture with various backbones (VGG16, ResNet34, InceptionV3), the pipeline leverages test-time augmentation (TTA) and targeted removal of unconnected regions to enhance accuracy and robustness. Our results demonstrate a substantial improvement, with a 38% increase in the Dice similarity coefficient for the left adrenal gland and an 11% increase for the right adrenal gland on the AMOS dataset, achieved by the InceptionV3 model. Additionally, the pipeline significantly reduces false positives, underscoring its potential for clinical applications and its superiority over existing methods. These advancements make our approach a crucial contribution to the field of medical image segmentation.

摘要

从CT图像中准确分割肾上腺对于增强计算机辅助诊断和手术规划至关重要。然而,肾上腺体积小、形状不规则且与周围组织相邻,使得这项任务极具挑战性。本研究引入了一种新颖的流程,通过整合先进的预处理技术和强大的后处理框架,显著改善了左右肾上腺的分割效果。该流程利用具有各种骨干网络(VGG16、ResNet34、InceptionV3)的二维UNet架构,借助测试时增强(TTA)和针对性地去除不相连区域来提高准确性和鲁棒性。我们的结果表明有显著改进,InceptionV3模型在AMOS数据集上使左肾上腺的Dice相似系数提高了38%,右肾上腺提高了11%。此外,该流程显著减少了假阳性,突出了其在临床应用中的潜力以及相对于现有方法的优越性。这些进展使我们的方法对医学图像分割领域做出了至关重要的贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验