Biological Research Centre, Szeged, Hungary.
University of Szeged, Szeged, Hungary.
Sci Rep. 2020 Mar 19;10(1):5068. doi: 10.1038/s41598-020-61808-3.
Recent advancements in deep learning have revolutionized the way microscopy images of cells are processed. Deep learning network architectures have a large number of parameters, thus, in order to reach high accuracy, they require a massive amount of annotated data. A common way of improving accuracy builds on the artificial increase of the training set by using different augmentation techniques. A less common way relies on test-time augmentation (TTA) which yields transformed versions of the image for prediction and the results are merged. In this paper we describe how we have incorporated the test-time argumentation prediction method into two major segmentation approaches utilized in the single-cell analysis of microscopy images. These approaches are semantic segmentation based on the U-Net, and instance segmentation based on the Mask R-CNN models. Our findings show that even if only simple test-time augmentations (such as rotation or flipping and proper merging methods) are applied, TTA can significantly improve prediction accuracy. We have utilized images of tissue and cell cultures from the Data Science Bowl (DSB) 2018 nuclei segmentation competition and other sources. Additionally, boosting the highest-scoring method of the DSB with TTA, we could further improve prediction accuracy, and our method has reached an ever-best score at the DSB.
深度学习的最新进展彻底改变了细胞显微镜图像的处理方式。深度学习网络架构具有大量参数,因此,为了达到高精度,它们需要大量标注数据。一种常见的提高准确性的方法是通过使用不同的增强技术来人工增加训练集。一种不太常见的方法依赖于测试时增强(TTA),它会生成图像的变换版本进行预测,并合并结果。在本文中,我们描述了如何将测试时论证预测方法纳入两种主要的显微镜图像单细胞分析中使用的分割方法。这些方法是基于 U-Net 的语义分割和基于 Mask R-CNN 模型的实例分割。我们的研究结果表明,即使只应用简单的测试时增强(例如旋转或翻转以及适当的合并方法),TTA 也可以显著提高预测准确性。我们利用了来自 Data Science Bowl(DSB)2018 核分割竞赛和其他来源的组织和细胞培养物的图像。此外,通过 TTA 增强 DSB 中得分最高的方法,我们可以进一步提高预测准确性,我们的方法在 DSB 中达到了历史最佳成绩。
IEEE Trans Med Imaging. 2021-7
Comput Methods Programs Biomed. 2020-8
J Imaging. 2022-3-11
JMIR Med Inform. 2021-12-2
Entropy (Basel). 2022-1-17
BMC Med Imaging. 2023-10-19
Diagnostics (Basel). 2025-8-9
Sci Rep. 2025-3-28
J Imaging Inform Med. 2025-3-4
IEEE Open J Eng Med Biol. 2023-6-21
PeerJ Comput Sci. 2023-12-19
Nat Methods. 2019-10-21
Plant Physiol. 2019-10-21
Cytometry A. 2019-7-16
IEEE Trans Med Imaging. 2019-2
IEEE Trans Pattern Anal Mach Intell. 2018-6-5
Nat Commun. 2018-1-15
IEEE Trans Med Imaging. 2017-3-6