Ivucic Gabriel, Pahuja Saurav, Putze Felix, Cai Siqi, Li Haizhou, Schultz Tanja
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-4. doi: 10.1109/EMBC53108.2024.10782636.
This study assesses the performance of different cross-validation splits for brain-signal-based Auditory Attention Decoding (AAD) using deep neural networks on three publicly available Electroencephalography datasets. We investigate the effect of trial-specific knowledge during training and assess adaptability to diverse scenarios with a trial-independent split. Introducing a causal time-series split, and simulating online decoding, our results demonstrate a consistent performance increase for auditory attention classification. These positive outcomes provide valuable insights for the development of future brain-signal-based AAD systems, emphasizing the potential for practical, person-dependent AAD applications. The results highlight the importance of diverse evaluation methodologies for enhancing generalizability in developing effective neurofeedback systems and assistive technologies for auditory processing disorders under more real-life conditions.
本研究使用深度神经网络,在三个公开可用的脑电图数据集上评估了基于脑信号的听觉注意力解码(AAD)的不同交叉验证分割的性能。我们研究了训练期间特定试验知识的影响,并通过独立于试验的分割评估对不同场景的适应性。引入因果时间序列分割并模拟在线解码,我们的结果表明听觉注意力分类的性能持续提高。这些积极成果为未来基于脑信号的AAD系统的开发提供了有价值的见解,强调了实际的、因人而异的AAD应用的潜力。结果突出了多种评估方法对于在更现实生活条件下开发有效的神经反馈系统和听觉处理障碍辅助技术时提高泛化性的重要性。