Zhang Zijie, Ding Yang, Lin Kaibin, Ban Wenli, Ding Luyue, Sun Yudong, Fu Chuanliang, Ren Yihang, Han Can, Zhang Xue, Wei Xiaoer, Hu Shundong, Zhao Yuwu, Cao Li, Wang Jun, Nazarian Saman, Cao Ying, Zheng Lan, Zhang Min, Fu Jianliang, Li Jingbo, Han Xiang, Qian Dahong, Huang Dong
Heart Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
EClinicalMedicine. 2025 Feb 17;81:103118. doi: 10.1016/j.eclinm.2025.103118. eCollection 2025 Mar.
Atrial fibrillation (AF) represents a major risk factor of ischemic stroke recurrence with serious management implications. However, it often remains undiagnosed due to lack of standard or prolonged cardiac rhythm monitoring. We aim to create a novel end-to-end artificial intelligence (AI) model that uses MRI data to rapidly identify high AF risk in patients who suffer from an acute ischemic stroke.
This study comprises an internal retrospective cohort and a prospective cohort from Shanghai sixth people's hospital to train and validate an MRI-based AI model. Between January 1, 2018 and December 31, 2021, 510 patients were retrospectively enrolled for algorithm development and performance was measured using fivefold cross-validation. Patients from this trial were registered with http://www.chictr.org.cn, ChiCTR2200056385. Between September 1, 2022 and July 31, 2023, 73 patients were prospectively enrolled for algorithm test. An external cohort of 175 patients from Huashan Hospital, Minhang Hospital, and Shanghai Tenth People's Hospital was also enrolled retrospectively for further model validation. A combined classifier leveraging pre-defined radiomics features and features extracted by convolutional neural network (CNN) was proposed to identify underlying AF in acute ischemic stroke patients. Area under the curve (AUC), sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were calculated for model evaluation.
The top-performing combined classifier achieved an AUC of 0.94 (95% CI, 0.90-0.98) in the internal retrospective validation group, 0.85 (95% CI, 0.79-0.91) in the external validation group, and 0.87 (95% CI, 0.90-0.98) in the prospective test group. Based on subgroup analysis, the AI model performed well in female patients, patients with NIHSS > 4 or CHADS-VASc ≤ 3, with the AUC of 0.91, 0.94, and 0.90, respectively. More importantly, our proposed model identified all the AF patients that were diagnosed with Holter monitoring during index stroke admission.
Our work suggested a potential association between brain ischemic lesion pattern on MR images and underlying AF. Furthermore, with additional validation, the AI model we developed may serve as a rapid screening tool for AF in clinical practice of stroke units.
This work was supported by grants from the National Natural Science Foundation of China (NSFC, Grant Number: 81871102 and 82172068); Shanghai Jiao Tong University School of Medicine, Two-Hundred Talent Program as Research Doctor (Grant Number: SBR202204); Municipal Science and Technology Commission Medical Innovation Project of Shanghai, (Grant/Award Number: 20Y11910200); Research Physician Program of Shanghai Shen Kang Hospital Development Center (Grant Number: SHD2022CRD039) to Dr. Dong Huang and the SJTU Trans-med Awards Research (No. 20220101) to Dahong Qian.
心房颤动(AF)是缺血性中风复发的主要危险因素,对治疗具有重要意义。然而,由于缺乏标准或长期的心律监测,AF常常未被诊断出来。我们旨在创建一种新型的端到端人工智能(AI)模型,该模型利用磁共振成像(MRI)数据快速识别急性缺血性中风患者的高AF风险。
本研究包括一个内部回顾性队列和一个来自上海第六人民医院的前瞻性队列,用于训练和验证基于MRI的AI模型。在2018年1月1日至2021年12月31日期间,回顾性纳入510例患者用于算法开发,并使用五折交叉验证来评估性能。该试验的患者已在http://www.chictr.org.cn注册,注册号为ChiCTR2200056385。在2022年9月1日至2023年7月31日期间,前瞻性纳入73例患者用于算法测试。还回顾性纳入了来自华山医院、闵行医院和上海第十人民医院的175例患者组成的外部队列,用于进一步的模型验证。提出了一种利用预定义的放射组学特征和卷积神经网络(CNN)提取的特征的联合分类器,以识别急性缺血性中风患者潜在的AF。计算曲线下面积(AUC)、敏感性、特异性、准确性、阳性预测值和阴性预测值用于模型评估。
表现最佳的联合分类器在内部回顾性验证组中的AUC为0.94(95%CI,0.90 - 0.98),在外部验证组中为0.85(95%CI,0.79 - 0.91),在前瞻性测试组中为0.87(95%CI,0.90 - 0.98)。基于亚组分析,AI模型在女性患者、美国国立卫生研究院卒中量表(NIHSS)> 4或CHADS-VASc≤3的患者中表现良好,AUC分别为0.91、0.94和0.90。更重要的是,我们提出的模型识别出了在首次中风住院期间通过动态心电图监测诊断出AF的所有患者。
我们的研究表明MR图像上的脑缺血病变模式与潜在的AF之间可能存在关联。此外,经过进一步验证,我们开发的AI模型可作为中风单元临床实践中AF的快速筛查工具。
本研究得到中国国家自然科学基金(NSFC,项目编号:81871102和82172068);上海交通大学医学院“双百人计划”科研博士项目(项目编号:SBR202204);上海市科委医学创新项目(项目编号:20Y11910200);上海申康医院发展中心研究医师项目(项目编号:SHD2022CRD039)资助董黄博士,以及上海交通大学转化医学奖励研究项目(编号:20220101)资助钱大宏。