Suppr超能文献

用于时空时间序列插补的因果感知时空图神经网络

Causality-Aware Spatiotemporal Graph Neural Networks for Spatiotemporal Time Series Imputation.

作者信息

Jing Baoyu, Zhou Dawei, Ren Kan, Yang Carl

机构信息

University of Illinois, Urbana-Champaign, IL, USA.

Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.

出版信息

Proc ACM Int Conf Inf Knowl Manag. 2024;2024:1027-1037. doi: 10.1145/3627673.3679642. Epub 2024 Oct 21.

Abstract

Spatiotemporal time series are usually collected via monitoring sensors placed at different locations, which usually contain missing values due to various failures, such as mechanical damages and Internet outages. Imputing the missing values is crucial for analyzing time series. When recovering a specific data point, most existing methods consider all the information relevant to that point regardless of the cause-and-effect relationship. During data collection, it is inevitable that some unknown confounders are included, e.g., background noise in time series and non-causal shortcut edges in the constructed sensor network. These confounders could open backdoor paths and establish non-causal correlations between the input and output. Over-exploiting these non-causal correlations could cause overfitting. In this paper, we first revisit spatiotemporal time series imputation from a causal perspective and show how to block the confounders via the frontdoor adjustment. Based on the results of frontdoor adjustment, we introduce a novel Causality-Aware Spatiotemporal Graph Neural Network (Casper), which contains a novel Prompt Based Decoder (PBD) and a Spatiotemporal Causal Attention (SCA). PBD could reduce the impact of confounders and SCA could discover the sparse causal relationships among embeddings. Theoretical analysis reveals that SCA discovers causal relationships based on the values of gradients. We evaluate Casper on three real-world datasets, and the experimental results show that Casper could outperform the baselines and could effectively discover the causal relationships.

摘要

时空时间序列通常通过放置在不同位置的监测传感器收集,由于各种故障(如机械损坏和网络中断),这些序列通常包含缺失值。插补缺失值对于时间序列分析至关重要。在恢复特定数据点时,大多数现有方法会考虑与该点相关的所有信息,而不管因果关系如何。在数据收集过程中,不可避免地会包含一些未知的混杂因素,例如时间序列中的背景噪声和构建的传感器网络中的非因果捷径边。这些混杂因素可能会打开后门路径,并在输入和输出之间建立非因果相关性。过度利用这些非因果相关性可能会导致过拟合。在本文中,我们首先从因果关系的角度重新审视时空时间序列插补,并展示如何通过前门调整来阻断混杂因素。基于前门调整的结果,我们引入了一种新颖的因果感知时空图神经网络(Casper),它包含一个新颖的基于提示的解码器(PBD)和时空因果注意力(SCA)。PBD可以减少混杂因素的影响,SCA可以发现嵌入之间的稀疏因果关系。理论分析表明,SCA基于梯度值发现因果关系。我们在三个真实世界的数据集上评估了Casper,实验结果表明Casper的性能优于基线,并且可以有效地发现因果关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f27b/11876796/ca7125433588/nihms-2058364-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验