Suppr超能文献

时域大脑:利用时延网络、全息过程、无线电通信和涌现振荡序列实现大脑功能的时间机制。

Time-domain brain: temporal mechanisms for brain functions using time-delay nets, holographic processes, radio communications, and emergent oscillatory sequences.

作者信息

Baker Janet M, Cariani Peter

机构信息

Massachusetts Institute of Technology, Cambridge, MA, United States.

Harvard Medical School, Boston, MA, United States.

出版信息

Front Comput Neurosci. 2025 Feb 18;19:1540532. doi: 10.3389/fncom.2025.1540532. eCollection 2025.

Abstract

Time is essential for understanding the brain. A temporal theory for realizing major brain functions (e.g., sensation, cognition, motivation, attention, memory, learning, and motor action) is proposed that uses temporal codes, time-domain neural networks, correlation-based binding processes and signal dynamics. It adopts a signal-centric perspective in which neural assemblies produce circulating and propagating characteristic temporally patterned signals for each attribute (feature). Temporal precision is essential for temporal coding and processing. The characteristic spike patterns that constitute the signals enable general-purpose, multimodal, multidimensional vectorial representations of objects, events, situations, and procedures. Signals are broadcast and interact with each other in spreading activation time-delay networks to mutually reinforce, compete, and create new composite patterns. Sequences of events are directly encoded in the relative timings of event onsets. New temporal patterns are created through nonlinear multiplicative and thresholding signal interactions, such as mixing operations found in radio communications systems and wave interference patterns. The newly created patterns then become markers for bindings of specific combinations of signals and attributes (e.g., perceptual symbols, semantic pointers, and tags for cognitive nodes). Correlation operations enable both bottom-up productions of new composite signals and top-down recovery of constituent signals. Memory operates using the same principles: nonlocal, distributed, temporally coded memory traces, signal interactions and amplifications, and content-addressable access and retrieval. A short-term temporary store is based on circulating temporal spike patterns in reverberatory, spike-timing-facilitated circuits. A long-term store is based on synaptic modifications and neural resonances that select specific delay-paths to produce temporally patterned signals. Holographic principles of nonlocal representation, storage, and retrieval can be applied to temporal patterns as well as spatial patterns. These can automatically generate pattern recognition (wavefront reconstruction) capabilities, ranging from objects to concepts, for distributed associative memory applications. The evolution of proposed neural implementations of holograph-like signal processing and associative content-addressable memory mechanisms is discussed. These can be based on temporal correlations, convolutions, simple linear and nonlinear operations, wave interference patterns, and oscillatory interactions. The proposed mechanisms preserve high resolution temporal, phase, and amplitude information. These are essential for establishing high phase coherency and determining phase relationships, for binding/coupling, synchronization, and other operations. Interacting waves can sum constructively for amplification, or destructively, for suppression, or partially. Temporal precision, phase-locking, phase-dependent coding, phase-coherence, synchrony are discussed within the context of wave interference patterns and oscillatory interactions. Sequences of mixed neural oscillations are compared with a cascade of sequential mixing stages in a single-sideband carrier suppressed (SSBCS) radio communications system model. This mechanism suggests a manner by which multiple neural oscillation bands could interact to produce new emergent information-bearing oscillation bands, as well as to abolish previously generated bands. A hypothetical example illustrates how a succession of different oscillation carriers (gamma, beta, alpha, theta, and delta) could communicate and propagate (broadcast) information sequentially through a neural hierarchy of speech and language processing stages. Based on standard signal mixing principles, each stage emergently generates the next. The sequence of oscillatory bands generated in the mixing cascade model is consistent with neurophysiological observations. This sequence corresponds to stages of speech-language processing (sound/speech detection, acoustic-phonetics, phone/clusters, syllables, words/phrases, word sequences/sentences, and concepts/understanding). The oscillatory SSBCS cascade model makes specific predictions for oscillatory band frequencies that can be empirically tested. The principles postulated here may apply broadly for local and global oscillation interactions across the cortex. Sequences of oscillatory interactions can serve many functions, e.g., to regulate the flow and interaction of bottom-up, gamma-mediated and top-down, beta-mediated neural signals, to enable cross-frequency coupling. Some specific guidelines are offered as to how the general time-domain theory might be empirically tested. Neural signals need to be sampled and analyzed with high temporal resolution, without destructive windowing or filtering. Our intent is to suggest what we think is possible, and to widen both the scope of brain theory and experimental inquiry into brain mechanisms, functions, and behaviors.

摘要

时间对于理解大脑至关重要。本文提出了一种关于实现主要脑功能(如感觉、认知、动机、注意力、记忆、学习和运动行为)的时间理论,该理论使用时间编码、时域神经网络、基于相关性的绑定过程和信号动力学。它采用以信号为中心的观点,即神经集合为每个属性(特征)产生循环和传播的具有特征性时间模式的信号。时间精度对于时间编码和处理至关重要。构成信号的特征性脉冲模式能够实现对物体、事件、情境和程序的通用、多模态、多维矢量表示。信号在扩散激活时间延迟网络中进行广播并相互作用,以相互增强、竞争并创建新的复合模式。事件序列直接编码在事件起始的相对时间中。新的时间模式通过非线性乘法和阈值信号相互作用创建,例如无线电通信系统中的混合操作和波干涉模式。新创建的模式随后成为信号和属性特定组合(如感知符号、语义指针和认知节点标签)绑定的标记。相关操作既能够自下而上产生新的复合信号,也能够自上而下恢复组成信号。记忆以相同的原理运作:非局部、分布式、时间编码的记忆痕迹、信号相互作用和放大,以及内容可寻址的访问和检索。短期临时存储基于回响式、脉冲定时促进电路中的循环时间脉冲模式。长期存储基于突触修饰和神经共振,它们选择特定的延迟路径以产生具有时间模式的信号。非局部表示、存储和检索的全息原理既可以应用于空间模式,也可以应用于时间模式。这些原理能够自动生成从物体到概念的模式识别(波前重建)能力,用于分布式关联记忆应用。本文讨论了所提出的类全息信号处理和关联内容可寻址记忆机制的神经实现的演变。这些机制可以基于时间相关性、卷积、简单的线性和非线性操作、波干涉模式以及振荡相互作用。所提出的机制保留了高分辨率的时间、相位和幅度信息。这些信息对于建立高相位相干性和确定相位关系、进行绑定/耦合、同步及其他操作至关重要。相互作用的波可以相长叠加进行放大,也可以相消叠加进行抑制,或者部分相消叠加。在波干涉模式和振荡相互作用的背景下讨论了时间精度、锁相、相位依赖编码、相位相干性和同步性。将混合神经振荡序列与单边带载波抑制(SSBCS)无线电通信系统模型中的一系列顺序混合阶段进行了比较。该机制提出了一种多个神经振荡带相互作用以产生新的涌现的携带信息的振荡带以及消除先前生成的振荡带的方式。一个假设的例子说明了一系列不同的振荡载波(伽马、贝塔、阿尔法、西塔和德尔塔)如何通过语音和语言处理阶段的神经层次顺序地通信和传播(广播)信息。基于标准信号混合原理,每个阶段都会涌现出下一个阶段。混合级联模型中产生的振荡带序列与神经生理学观察结果一致。这个序列对应于语音 - 语言处理的阶段(声音/语音检测、声学语音学、音素/音丛、音节、单词/短语、单词序列/句子以及概念/理解)。振荡SSBCS级联模型对可通过实验测试的振荡带频率做出了具体预测。这里假设的原理可能广泛适用于整个皮层的局部和全局振荡相互作用。振荡相互作用序列可以发挥多种功能,例如调节自下而上的、由伽马介导的和自上而下的、由贝塔介导的神经信号的流动和相互作用,以实现跨频率耦合。本文提供了一些关于如何通过实验验证一般时域理论的具体指导方针。神经信号需要以高时间分辨率进行采样和分析,而不进行破坏性的加窗或滤波。我们的目的是提出我们认为可能的事情,并拓宽大脑理论以及对大脑机制、功能和行为的实验探究的范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6614/11877394/dfba4938361f/fncom-19-1540532-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验