Chu Chenyin, Wang Yihan, Ma Liwei, Mutimer Chloe A, Ji Guangyan, Shi Huiyu, Yassi Nawaf, Masters Colin L, Goudey Benjamin, Jin Liang, Pan Yijun
The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.
Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
Alzheimers Dement. 2025 Mar;21(3):e14583. doi: 10.1002/alz.14583.
Cerebral amyloid angiopathy (CAA) is a cerebrovascular condition, the severity of which can only be determined post mortem. Here, we developed machine learning models, the Florey CAA Score (FCAAS), to predict CAA severity (none/mild/moderate/severe).
Building on an auto-score-ordinal algorithm, the FCAAS models were developed and validated using data collected by three cohort studies of aging and dementia. The developed FCAAS models were digitized as a web-based tool. A pilot trial was conducted using this web-based tool.
The FCAAS-4 achieved a mean area under the receiver operating characteristic curve (AUC-ROC) of 0.74 (95% confidence interval: 0.71-0.77) and a Harrell generalized c-index of 0.72 (0.70-0.75). Pilot trial results obtained a mean AUC-ROC of 0.82 (0.71-0.85) and Harrell generalized c-index 0.79 (0.73-0.82).
The FCAAS models demonstrate a promising performance in predicting CAA severity. This framework holds the potential for predicting development of amyloid-related imaging abnormalities (ARIAs), given the CAA-ARIAs link.
The severity of cerebral amyloid angiopathy (CAA) can only be determined post mortem. A web tool, the Florey CAA Score (FCAAS), was developed to predict CAA severity. The FCAAS holds the potential to be used for CAA risk stratification in clinics. CAA is linked to increased risk of amyloid-related imaging abnormalities (ARIAs). The framework used by FCAAS can possibly be adapted to predict ARIAs risk.
脑淀粉样血管病(CAA)是一种脑血管疾病,其严重程度只能在死后确定。在此,我们开发了机器学习模型——弗洛里CAA评分(FCAAS),以预测CAA的严重程度(无/轻度/中度/重度)。
基于自动评分序数算法,利用三项衰老与痴呆队列研究收集的数据开发并验证了FCAAS模型。将开发的FCAAS模型数字化为基于网络的工具。使用该基于网络的工具进行了一项试点试验。
FCAAS-4在受试者操作特征曲线下的平均面积(AUC-ROC)为0.74(95%置信区间:0.71-0.77),哈雷尔广义c指数为0.72(0.70-0.75)。试点试验结果的平均AUC-ROC为0.82(0.71-0.85),哈雷尔广义c指数为0.79(0.73-0.82)。
FCAAS模型在预测CAA严重程度方面表现出良好的性能。鉴于CAA与淀粉样蛋白相关成像异常(ARIAs)的联系,该框架具有预测ARIAs发展的潜力。
脑淀粉样血管病(CAA)的严重程度只能在死后确定。开发了一种网络工具——弗洛里CAA评分(FCAAS),以预测CAA严重程度。FCAAS有潜力用于临床CAA风险分层。CAA与淀粉样蛋白相关成像异常(ARIAs)风险增加有关。FCAAS使用的框架可能适用于预测ARIAs风险。