Liu Bojing, Polack Meaghan, Coudray Nicolas, Claudio Quiros Adalberto, Sakellaropoulos Theodore, Le Hortense, Karimkhan Afreen, Crobach Augustinus S L P, van Krieken J Han J M, Yuan Ke, Tollenaar Rob A E M, Mesker Wilma E, Tsirigos Aristotelis
Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Karolinska, Sweden.
Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY, USA.
Nat Commun. 2025 Mar 8;16(1):2328. doi: 10.1038/s41467-025-57541-y.
Self-supervised learning (SSL) automates the extraction and interpretation of histopathology features on unannotated hematoxylin-eosin-stained whole slide images (WSIs). We train an SSL Barlow Twins encoder on 435 colon adenocarcinoma WSIs from The Cancer Genome Atlas to extract features from small image patches (tiles). Leiden community detection groups tiles into histomorphological phenotype clusters (HPCs). HPC reproducibility and predictive ability for overall survival are confirmed in an independent clinical trial (N = 1213 WSIs). This unbiased atlas results in 47 HPCs displaying unique and shared clinically significant histomorphological traits, highlighting tissue type, quantity, and architecture, especially in the context of tumor stroma. Through in-depth analyses of these HPCs, including immune landscape and gene set enrichment analyses, and associations to clinical outcomes, we shine light on the factors influencing survival and responses to treatments of standard adjuvant chemotherapy and experimental therapies. Further exploration of HPCs may unveil additional insights and aid decision-making and personalized treatments for colon cancer patients.
自监督学习(SSL)可自动提取和解释苏木精-伊红染色的全切片图像(WSIs)上的组织病理学特征,这些图像未经过注释。我们在来自癌症基因组图谱的435张结肠腺癌WSIs上训练了一个SSL巴洛双胞胎编码器,以从小图像块(切片)中提取特征。莱顿社区检测将切片分组为组织形态学表型簇(HPCs)。在一项独立临床试验(N = 1213张WSIs)中证实了HPCs对总生存期的可重复性和预测能力。这个无偏图谱产生了47个HPCs,它们显示出独特且具有临床意义的组织形态学特征,突出了组织类型、数量和结构,特别是在肿瘤基质的背景下。通过对这些HPCs进行深入分析,包括免疫图谱和基因集富集分析,以及与临床结果的关联,我们揭示了影响标准辅助化疗和实验性治疗的生存和反应的因素。对HPCs的进一步探索可能会揭示更多见解,并有助于为结肠癌患者做出决策和进行个性化治疗。