利用无标注病理切片的自监督学习来绘制癌症表型的组织形态学图谱。

Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unannotated pathology slides.

机构信息

School of Computing Science, University of Glasgow, Glasgow, Scotland, UK.

School of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK.

出版信息

Nat Commun. 2024 Jun 11;15(1):4596. doi: 10.1038/s41467-024-48666-7.

Abstract

Cancer diagnosis and management depend upon the extraction of complex information from microscopy images by pathologists, which requires time-consuming expert interpretation prone to human bias. Supervised deep learning approaches have proven powerful, but are inherently limited by the cost and quality of annotations used for training. Therefore, we present Histomorphological Phenotype Learning, a self-supervised methodology requiring no labels and operating via the automatic discovery of discriminatory features in image tiles. Tiles are grouped into morphologically similar clusters which constitute an atlas of histomorphological phenotypes (HP-Atlas), revealing trajectories from benign to malignant tissue via inflammatory and reactive phenotypes. These clusters have distinct features which can be identified using orthogonal methods, linking histologic, molecular and clinical phenotypes. Applied to lung cancer, we show that they align closely with patient survival, with histopathologically recognised tumor types and growth patterns, and with transcriptomic measures of immunophenotype. These properties are maintained in a multi-cancer study.

摘要

癌症的诊断和治疗依赖于病理学家从显微镜图像中提取复杂信息,这需要耗费时间且容易受到人为偏见的影响。有监督的深度学习方法已经被证明非常有效,但受到训练中使用的注释的成本和质量的限制。因此,我们提出了组织形态表型学习,这是一种无需标注的自监督方法,通过自动发现图像块中的判别特征来进行操作。将图像块按形态相似性分组,形成组织形态表型图谱(HP-Atlas),通过炎症和反应性表型揭示从良性到恶性组织的轨迹。这些聚类具有可以使用正交方法识别的独特特征,将组织学、分子和临床表型联系起来。将其应用于肺癌,我们发现它们与患者的生存率、病理上公认的肿瘤类型和生长模式以及免疫表型的转录组学测量密切相关。这些特性在多癌症研究中得以维持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ce/11525555/3a62954cc93f/41467_2024_48666_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索