文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

自监督学习揭示了结肠癌治疗策略中具有临床相关性的组织形态学模式。

Self-Supervised Learning Reveals Clinically Relevant Histomorphological Patterns for Therapeutic Strategies in Colon Cancer.

作者信息

Liu Bojing, Polack Meaghan, Coudray Nicolas, Quiros Adalberto Claudio, Sakellaropoulos Theodore, Crobach Augustinus S L P, van Krieken J Han J M, Yuan Ke, Tollenaar Rob A E M, Mesker Wilma E, Tsirigos Aristotelis

机构信息

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Sweden.

Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, New York, USA.

出版信息

bioRxiv. 2024 Mar 21:2024.02.26.582106. doi: 10.1101/2024.02.26.582106.


DOI:10.1101/2024.02.26.582106
PMID:38496571
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10942268/
Abstract

Self-supervised learning (SSL) automates the extraction and interpretation of histopathology features on unannotated hematoxylin-and-eosin-stained whole-slide images (WSIs). We trained an SSL Barlow Twins-encoder on 435 TCGA colon adenocarcinoma WSIs to extract features from small image patches. Leiden community detection then grouped tiles into histomorphological phenotype clusters (HPCs). HPC reproducibility and predictive ability for overall survival was confirmed in an independent clinical trial cohort (N=1213 WSIs). This unbiased atlas resulted in 47 HPCs displaying unique and sharing clinically significant histomorphological traits, highlighting tissue type, quantity, and architecture, especially in the context of tumor stroma. Through in-depth analysis of these HPCs, including immune landscape and gene set enrichment analysis, and association to clinical outcomes, we shed light on the factors influencing survival and responses to treatments like standard adjuvant chemotherapy and experimental therapies. Further exploration of HPCs may unveil new insights and aid decision-making and personalized treatments for colon cancer patients.

摘要

自监督学习(SSL)可自动从未经标注的苏木精-伊红染色全切片图像(WSIs)中提取并解释组织病理学特征。我们在435张TCGA结肠腺癌WSIs上训练了一个SSL巴洛双胞胎编码器,以从小图像块中提取特征。然后,莱顿社区检测将切片分组为组织形态学表型簇(HPCs)。在一个独立的临床试验队列(N = 1213张WSIs)中证实了HPCs对总生存期的可重复性和预测能力。这个无偏图谱产生了47个HPCs,它们显示出独特且具有临床意义的组织形态学特征,突出了组织类型、数量和结构,特别是在肿瘤基质方面。通过对这些HPCs进行深入分析,包括免疫图谱和基因集富集分析以及与临床结果的关联,我们揭示了影响生存以及对标准辅助化疗和实验性治疗等治疗反应的因素。对HPCs的进一步探索可能会揭示新的见解,并有助于为结肠癌患者进行决策和个性化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157a/10958537/66a787b4787b/nihpp-2024.02.26.582106v2-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157a/10958537/daf60e684c27/nihpp-2024.02.26.582106v2-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157a/10958537/d7e760f67d81/nihpp-2024.02.26.582106v2-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157a/10958537/5ec9ff58378c/nihpp-2024.02.26.582106v2-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157a/10958537/0e12b0d47948/nihpp-2024.02.26.582106v2-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157a/10958537/2888c369a8ff/nihpp-2024.02.26.582106v2-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157a/10958537/07629ba5cc00/nihpp-2024.02.26.582106v2-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157a/10958537/66a787b4787b/nihpp-2024.02.26.582106v2-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157a/10958537/daf60e684c27/nihpp-2024.02.26.582106v2-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157a/10958537/d7e760f67d81/nihpp-2024.02.26.582106v2-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157a/10958537/5ec9ff58378c/nihpp-2024.02.26.582106v2-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157a/10958537/0e12b0d47948/nihpp-2024.02.26.582106v2-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157a/10958537/2888c369a8ff/nihpp-2024.02.26.582106v2-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157a/10958537/07629ba5cc00/nihpp-2024.02.26.582106v2-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157a/10958537/66a787b4787b/nihpp-2024.02.26.582106v2-f0007.jpg

相似文献

[1]
Self-Supervised Learning Reveals Clinically Relevant Histomorphological Patterns for Therapeutic Strategies in Colon Cancer.

bioRxiv. 2024-3-21

[2]
Self-supervised learning reveals clinically relevant histomorphological patterns for therapeutic strategies in colon cancer.

Nat Commun. 2025-3-8

[3]
SAMPLER: unsupervised representations for rapid analysis of whole slide tissue images.

EBioMedicine. 2024-1

[4]
Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unannotated pathology slides.

Nat Commun. 2024-6-11

[5]
Lung Cancer Diagnosis on Virtual Histologically Stained Tissue Using Weakly Supervised Learning.

Mod Pathol. 2024-6

[6]
Tailoring pretext tasks to improve self-supervised learning in histopathologic subtype classification of lung adenocarcinomas.

Comput Biol Med. 2023-11

[7]
A Weakly Supervised Deep Learning Model and Human-Machine Fusion for Accurate Grading of Renal Cell Carcinoma from Histopathology Slides.

Cancers (Basel). 2023-6-15

[8]
Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts.

Lancet Digit Health. 2023-2

[9]
A novel deep learning-based algorithm combining histopathological features with tissue areas to predict colorectal cancer survival from whole-slide images.

J Transl Med. 2023-10-17

[10]
Masked hypergraph learning for weakly supervised histopathology whole slide image classification.

Comput Methods Programs Biomed. 2024-8

本文引用的文献

[1]
Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unannotated pathology slides.

Nat Commun. 2024-6-11

[2]
End-to-end prognostication in colorectal cancer by deep learning: a retrospective, multicentre study.

Lancet Digit Health. 2024-1

[3]
Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study.

Cancer Cell. 2023-9-11

[4]
Self-supervised Learning: A Succinct Review.

Arch Comput Methods Eng. 2023

[5]
Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN.

Gut. 2023-2

[6]
Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up.

Ann Oncol. 2023-1

[7]
Fast and scalable search of whole-slide images via self-supervised deep learning.

Nat Biomed Eng. 2022-12

[8]
Pan-cancer integrative histology-genomic analysis via multimodal deep learning.

Cancer Cell. 2022-8-8

[9]
Deep learning links histology, molecular signatures and prognosis in cancer.

Nat Cancer. 2020-8

[10]
Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer.

Mol Cancer. 2021-11-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索