Suppr超能文献

整合家庭环境传感器数据和电子健康记录数据以预测肌萎缩侧索硬化症的预后:一项探索性可行性研究方案

Integrating Ambient In-Home Sensor Data and Electronic Health Record Data for the Prediction of Outcomes in Amyotrophic Lateral Sclerosis: Protocol for an Exploratory Feasibility Study.

作者信息

Janes William E, Marchal Noah, Song Xing, Popescu Mihail, Mosa Abu Saleh Mohammad, Earwood Juliana H, Jones Vovanti, Skubic Marjorie

机构信息

Department of Occupational Therapy, College of Health Science, University of Missouri, Columbia, MO, United States.

Institute for Data Science and Informatics, University of Missouri, Columbia, MO, United States.

出版信息

JMIR Res Protoc. 2025 Mar 12;14:e60437. doi: 10.2196/60437.

Abstract

BACKGROUND

Amyotrophic lateral sclerosis (ALS) leads to rapid physiological and functional decline before causing untimely death. Current best-practice approaches to interdisciplinary care are unable to provide adequate monitoring of patients' health. Passive in-home sensor systems enable 24×7 health monitoring. Combining sensor data with outcomes extracted from the electronic health record (EHR) through a supervised machine learning algorithm may enable health care providers to predict and ultimately slow decline among people living with ALS.

OBJECTIVE

This study aims to describe a federated approach to assimilating sensor and EHR data in a machine learning algorithm to predict decline among people living with ALS.

METHODS

Sensor systems have been continuously deployed in the homes of 4 participants for up to 330 days. Sensors include bed, gait, and motion sensors. Sensor data are subjected to a multidimensional streaming clustering algorithm to detect changes in health status. Specific health outcomes are identified in the EHR and extracted via the REDCap (Research Electronic Data Capture; Vanderbilt University) Fast Healthcare Interoperability Resource directly into a secure database.

RESULTS

As of this writing (fall 2024), machine learning algorithms are currently in development to predict those health outcomes from sensor-detected changes in health status. This methodology paper presents preliminary results from one participant as a proof of concept. The participant experienced several notable changes in activity, fluctuations in heart rate and respiration rate, and reductions in gait speed. Data collection will continue through 2025 with a growing sample.

CONCLUSIONS

The system described in this paper enables tracking the health status of people living with ALS at unprecedented levels of granularity. Combined with tightly integrated EHR data, we anticipate building predictive models that can identify opportunities for health care services before adverse events occur. We anticipate that this system will improve and extend the lives of people living with ALS.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/60437.

摘要

背景

肌萎缩侧索硬化症(ALS)会导致患者在过早死亡前出现快速的生理和功能衰退。当前跨学科护理的最佳实践方法无法对患者的健康状况进行充分监测。被动式居家传感器系统能够实现7×24小时的健康监测。通过监督式机器学习算法将传感器数据与从电子健康记录(EHR)中提取的结果相结合,可能使医疗保健提供者能够预测并最终减缓ALS患者的病情衰退。

目的

本研究旨在描述一种联合方法,用于在机器学习算法中整合传感器和EHR数据,以预测ALS患者的病情衰退。

方法

传感器系统已在4名参与者家中持续部署长达330天。传感器包括床、步态和运动传感器。传感器数据经过多维流聚类算法处理,以检测健康状况的变化。在EHR中确定特定的健康结果,并通过REDCap(研究电子数据采集;范德堡大学)快速医疗保健互操作性资源直接提取到安全数据库中。

结果

截至撰写本文时(2024年秋季),机器学习算法正在开发中,以根据传感器检测到的健康状况变化预测那些健康结果。本方法学论文展示了一名参与者的初步结果作为概念验证。该参与者在活动方面经历了几次显著变化,心率和呼吸率出现波动,步态速度降低。数据收集将持续到2025年,样本量会不断增加。

结论

本文所述系统能够以前所未有的精细程度跟踪ALS患者的健康状况。结合紧密整合的EHR数据,我们预计构建预测模型,能够在不良事件发生前识别医疗保健服务机会。我们预计该系统将改善并延长ALS患者的生命。

国际注册报告识别码(IRRID):DERR1-10.2196/60437。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fbe/11947625/0eb2e3a7dbfe/resprot_v14i1e60437_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验