Eng John J H, Jiang Zhengzhi, Meunier Max, Rasmita Abdullah, Zhang Haoran, Yang Yuzhe, Zhou Feifei, Cai Hongbing, Dong Zhaogang, Zúñiga-Pérez Jesús, Gao Weibo
Nanyang Technological University, Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Singapore 637371, Singapore.
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
Phys Rev Lett. 2025 Feb 28;134(8):083602. doi: 10.1103/PhysRevLett.134.083602.
Solid-state defects susceptible of spin manipulation hold great promise for scalable quantum technology. To broaden their utility, operation at room temperature and emission in the telecom wavelength range are desired, eliminating cryogenic requirements and leveraging existing optical fiber infrastructure for the transmission of quantum information. To that end, we report that telecom single-photon emitters (SPEs) in gallium nitride (GaN) exhibit optically detected magnetic resonance (ODMR) at room temperature. The analysis of ODMR as a function of magnetic field orientation enables the determination of the orientation of the spin quantization axis with respect to the GaN crystalline lattice. The optical transitions dynamics are analyzed to gain further insight into the transition rates dominating ODMR. Our findings, coupled with the mature fabrication technology of GaNs, could facilitate the realization of scalable quantum technology.
易于进行自旋操控的固态缺陷对于可扩展量子技术具有巨大潜力。为了拓宽其应用范围,人们期望能在室温下运行并在电信波长范围内发射,从而消除低温需求,并利用现有的光纤基础设施来传输量子信息。为此,我们报告氮化镓(GaN)中的电信单光子发射器(SPE)在室温下表现出光探测磁共振(ODMR)。通过分析ODMR随磁场方向的变化,能够确定自旋量子化轴相对于GaN晶格的方向。对光学跃迁动力学进行分析,以进一步深入了解主导ODMR的跃迁速率。我们的发现,再加上GaN成熟的制造技术,可能会促进可扩展量子技术的实现。