Wu Jiyue, Zhang Feilong, Li Zhen, Gan Lijian, Cao Haoyuan, Cao Huawei, Hao Changzhen, Sun Zejia, Wang Wei
Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China.
Department of Urology, Peking University International Hospital, Beijing, China.
Comput Biol Chem. 2025 Aug;117:108421. doi: 10.1016/j.compbiolchem.2025.108421. Epub 2025 Mar 11.
Ischemia-reperfusion injury (IRI) is closely associated with numerous severe postoperative complications, including acute rejection, delayed graft function (DGF) and graft failure. Macrophages are central to modulating the aseptic inflammatory response during the IRI process. The objective of this study is to conduct an analysis of the developmental and differentiation characteristics of macrophages in IRI, identify distinct molecules subtypes of IRI, and establish robust predictive strategies for DGF and graft survival.
We analyzed scRNA-Seq data from GEO database to identify macrophage sub-clusters specific to renal IRI, and use the hdWGCNA algorithm to screen gene modules closely associated with this sub-cluster. Integrating these module genes with the results from bulk RNA-Seq differential analysis to obtain hub genes, and delineating the different IRI molecular subtypes through consensus clustering based on the expression profiles of hub genes. Innovatively, the gene expression matrix was transformed into a unique graphic pixel module and applied advanced computer vision processing algorithms to construct a DGF predictive model. Additionally, we also employed 111 combinations of 10 machine learning algorithms to develop a predictive signature for graft survival. Finally, we validated the expression of the key gene ANXA1 in a mouse IRI model using qRT-PCR, WB, and IHC.
This study successfully identified a subset of macrophages closely associated with renal IRI, and cell communication and pseudo-time analysis implied that they may be instrumental in both the maintenance and exacerbation of the IRI process. Utilizing the expression patterns of hub genes, recipients can be clustered into two subtypes (CI and C2) with unique clinical and molecular features. We innovatively applied deep learning algorithms to construct a model for DGF prediction, which can effectively mitigate batch effects among IRI recipients. Compared to other existing models, our model demonstrated superior performance with AUC of 0.816 and 0.845 in the training and validation set. Furthermore, we also used the random survival forest algorithm to develop a high-precision predictive signature for graft failure. The mouse IRI model confirmed a marked upregulation of ANXA1 mRNA and protein expression in renal tissue following IRI.
This study successfully revealed the macrophage sub-cluster closely associated with renal IRI. Two distinct IRI subgroups with different characteristics were identified and robust strategies were constructed for predicting DGF and graft survival, which can offer potential therapeutic targets for the treatment of IRI and reference for early prevention of various postoperative complications.
缺血再灌注损伤(IRI)与众多严重的术后并发症密切相关,包括急性排斥反应、移植肾功能延迟恢复(DGF)和移植物功能衰竭。巨噬细胞在IRI过程中对调节无菌性炎症反应起着核心作用。本研究的目的是分析IRI中巨噬细胞的发育和分化特征,确定IRI不同的分子亚型,并建立针对DGF和移植物存活的可靠预测策略。
我们分析了来自GEO数据库的单细胞RNA测序(scRNA-Seq)数据,以识别肾IRI特有的巨噬细胞亚群,并使用高密度加权基因共表达网络分析(hdWGCNA)算法筛选与该亚群密切相关的基因模块。将这些模块基因与批量RNA测序差异分析结果相结合,以获得枢纽基因,并基于枢纽基因的表达谱通过一致性聚类来划分不同的IRI分子亚型。创新性地,将基因表达矩阵转换为独特的图形像素模块,并应用先进的计算机视觉处理算法构建DGF预测模型。此外,我们还采用了10种机器学习算法的111种组合来开发移植物存活的预测特征。最后,我们使用定量逆转录聚合酶链反应(qRT-PCR)、蛋白质免疫印迹法(WB)和免疫组织化学法(IHC)在小鼠IRI模型中验证关键基因膜联蛋白A1(ANXA1)的表达。
本研究成功鉴定出与肾IRI密切相关的巨噬细胞亚群,细胞通讯和拟时间分析表明它们可能在IRI过程的维持和加剧过程中都发挥作用。利用枢纽基因的表达模式,受者可被聚类为具有独特临床和分子特征的两个亚型(CI和C2)。我们创新性地应用深度学习算法构建了DGF预测模型,该模型可有效减轻IRI受者之间的批次效应。与其他现有模型相比,我们的模型在训练集和验证集中表现出优异的性能,曲线下面积(AUC)分别为0.816和0.845。此外,我们还使用随机生存森林算法开发了移植物功能衰竭的高精度预测特征。小鼠IRI模型证实IRI后肾组织中ANXA1 mRNA和蛋白表达显著上调。
本研究成功揭示了与肾IRI密切相关的巨噬细胞亚群。鉴定出两个具有不同特征的不同IRI亚组,并构建了用于预测DGF和移植物存活的可靠策略,这可为IRI的治疗提供潜在的治疗靶点,并为早期预防各种术后并发症提供参考。