Obakiro Samuel Baker, Kiyimba Kenedy, Gavamukulya Yahaya, Maseruka Richard, Nabitandikwa Catherine, Kibuuka Ronald, Lulenzi Jalia, Lukwago Tonny Wotoyitide, Chebijira Mercy, Opio Moses, Tracy Edeya Sharon, Kibuule Dan, Oriko Richard Owor, Waako Paul, Makaye Angela, Shadrack Daniel M, Andima Moses
Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda.
Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda.
In Silico Pharmacol. 2025 Mar 15;13(1):45. doi: 10.1007/s40203-025-00337-1. eCollection 2025.
Aloe-emodin (AE) has drawn interest due to its potential activity against type II diabetes mellitus (T2DM). However, the mechanisms underlying its antidiabetic activity are not well explored. Using network pharmacology, molecular docking and molecular dynamics simulation studies, we investigated its molecular mechanisms in the management of T2DM. Potential target genes of AE were predicted using the Swiss Target Prediction (http://www.swisstargetprediction.ch/) database. The GeneCards, OMIM and DisGeNET databases were used to compile a comprehensive list of genes associated with T2DM. A compound-disease-target network was constructed, and protein-protein interaction networks were analysed to identify hub genes. Finally, molecular docking and interaction analysis between AE and the identified proteins were performed using AutoDock tools. Investigation of AE targets and genes associated with T2DM identified 32 overlapping genes. Gene ontology studies revealed that AE may exert its anti-diabetic effects by modulating glucose metabolism and enhancing cellular response to glucose. Furthermore, KEGG pathway analysis suggested that AE influences these processes by targeting pathways related to apoptosis, insulin resistance, and T2DM signaling. The core target proteins identified were TNF, ALB, TP53, PPARG, BCL2, CASP3, and EGFR. AE interaction with each of these proteins exhibited a binding energy of > - 5 kcal/mol, with TNF showing the lowest binding energy (- 7.75 kcal/mol). Molecular dynamics simulation further validated the molecular docking results with TNF and EGFR exhibiting a strong affinity for AE and forming stable interactions. AE exerts its antidiabetic activity through multiple mechanisms, with the most significant being the amelioration of pancreatic β-cell apoptosis by binding to and inhibiting the actions of TNFα. Further cellular and molecular studies are needed to validate these findings.
The online version contains supplementary material available at 10.1007/s40203-025-00337-1.
芦荟大黄素(AE)因其对2型糖尿病(T2DM)的潜在活性而受到关注。然而,其抗糖尿病活性的潜在机制尚未得到充分探索。通过网络药理学、分子对接和分子动力学模拟研究,我们探究了其在T2DM管理中的分子机制。利用瑞士靶点预测(http://www.swisstargetprediction.ch/)数据库预测AE的潜在靶基因。使用基因卡片、在线人类孟德尔遗传数据库(OMIM)和疾病基因数据库(DisGeNET)汇编与T2DM相关的基因综合列表。构建化合物-疾病-靶点网络,并分析蛋白质-蛋白质相互作用网络以识别枢纽基因。最后,使用自动对接工具进行AE与鉴定出的蛋白质之间的分子对接和相互作用分析。对AE靶点和与T2DM相关基因的研究确定了32个重叠基因。基因本体研究表明,AE可能通过调节葡萄糖代谢和增强细胞对葡萄糖的反应来发挥其抗糖尿病作用。此外,京都基因与基因组百科全书(KEGG)通路分析表明,AE通过靶向与细胞凋亡、胰岛素抵抗和T2DM信号传导相关的通路来影响这些过程。鉴定出的核心靶蛋白为肿瘤坏死因子(TNF)、白蛋白(ALB)、肿瘤蛋白p53(TP53)、过氧化物酶体增殖物激活受体γ(PPARG)、B细胞淋巴瘤2(BCL2)、半胱天冬酶3(CASP3)和表皮生长因子受体(EGFR)。AE与这些蛋白质中的每一种相互作用的结合能均> -5千卡/摩尔,其中TNF的结合能最低(-7.75千卡/摩尔)。分子动力学模拟进一步验证了分子对接结果,TNF和EGFR对AE表现出很强的亲和力并形成稳定的相互作用。AE通过多种机制发挥其抗糖尿病活性,其中最重要的是通过结合并抑制肿瘤坏死因子α(TNFα)的作用来改善胰腺β细胞凋亡。需要进一步的细胞和分子研究来验证这些发现。
在线版本包含可在10.1007/s40203-025-00337-1获取的补充材料。