Suppr超能文献

钙控制假说的广义数学框架描述了依赖于权重的突触可塑性。

A generalized mathematical framework for the calcium control hypothesis describes weight-dependent synaptic plasticity.

作者信息

Moldwin Toviah, Azran Li Shay, Segev Idan

机构信息

Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.

Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.

出版信息

J Comput Neurosci. 2025 Mar 18. doi: 10.1007/s10827-025-00894-6.

Abstract

The brain modifies synaptic strengths to store new information via long-term potentiation (LTP) and long-term depression (LTD). Evidence has mounted that long-term synaptic plasticity is controlled via concentrations of calcium ([Ca]) in postsynaptic dendritic spines. Several mathematical models describe this phenomenon, including those of Shouval, Bear, and Cooper (SBC) (Shouval et al., 2002, 2010) and Graupner and Brunel (GB) (Graupner & Brunel, 2012). Here we suggest a generalized version of the SBC and GB models, the fixed point - learning rate (FPLR) framework, where the synaptic [Ca] specifies a fixed point toward which the synaptic weight approaches asymptotically at a [Ca]-dependent rate. The FPLR framework offers a straightforward phenomenological interpretation of calcium-based plasticity: the calcium concentration tells the synaptic weight where it is going and how quickly it goes there. The FPLR framework can flexibly incorporate various experimental findings, including the existence of multiple regions of [Ca] where no plasticity occurs, or plasticity observed experimentally in cerebellar Purkinje cells, where the directionality of calcium-based synaptic changes is reversed relative to cortical and hippocampal neurons. We also suggest a modeling approach that captures the dependency of late-phase plasticity stabilization on protein synthesis. We demonstrate that due to the asymptotic nature of synaptic changes in the FPLR rule, the plastic changes induced by frequency- and spike-timing-dependent plasticity protocols are weight-dependent. Finally, we show how the FPLR framework can explain the weight-dependence observed in behavioral time scale plasticity (BTSP).

摘要

大脑通过长时程增强(LTP)和长时程抑制(LTD)来改变突触强度以存储新信息。越来越多的证据表明,长期突触可塑性是通过突触后树突棘中的钙浓度([Ca])来控制的。有几个数学模型描述了这一现象,包括舒瓦尔、贝尔和库珀(SBC)的模型(舒瓦尔等人,2002年,2010年)以及格劳普纳和布鲁内尔(GB)的模型(格劳普纳和布鲁内尔,2012年)。在此,我们提出了SBC和GB模型的一个广义版本,即定点 - 学习率(FPLR)框架,其中突触[Ca]指定了一个定点,突触权重以依赖于[Ca]的速率渐近地趋向该定点。FPLR框架为基于钙的可塑性提供了一种直接的现象学解释:钙浓度告诉突触权重它将去往何处以及去往那里的速度有多快。FPLR框架可以灵活地纳入各种实验结果,包括存在多个无可塑性发生的[Ca]区域,或者在小脑浦肯野细胞中实验观察到的可塑性,其中基于钙的突触变化的方向性相对于皮质和海马神经元是相反的。我们还提出了一种建模方法,该方法捕捉了晚期可塑性稳定对蛋白质合成的依赖性。我们证明,由于FPLR规则中突触变化的渐近性质,由频率和尖峰时间依赖性可塑性协议诱导的可塑性变化是权重依赖性的。最后,我们展示了FPLR框架如何能够解释在行为时间尺度可塑性(BTSP)中观察到的权重依赖性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验