一种描述突触后可塑性的生化特性——其时间尺度从毫秒到秒不等。
A biochemical description of postsynaptic plasticity-with timescales ranging from milliseconds to seconds.
机构信息
Courant Institute and Center for Neural Science, Department of Mathematics, New York University, New York, NY 10012.
Center for Neural Science, Department of Neural Science, New York University, New York, NY 10012.
出版信息
Proc Natl Acad Sci U S A. 2024 Feb 13;121(7):e2311709121. doi: 10.1073/pnas.2311709121. Epub 2024 Feb 7.
Synaptic plasticity [long-term potentiation/depression (LTP/D)], is a cellular mechanism underlying learning. Two distinct types of early LTP/D (E-LTP/D), acting on very different time scales, have been observed experimentally-spike timing dependent plasticity (STDP), on time scales of tens of ms; and behavioral time scale synaptic plasticity (BTSP), on time scales of seconds. BTSP is a candidate for a mechanism underlying rapid learning of spatial location by place cells. Here, a computational model of the induction of E-LTP/D at a spine head of a synapse of a hippocampal pyramidal neuron is developed. The single-compartment model represents two interacting biochemical pathways for the activation (phosphorylation) of the kinase (CaMKII) with a phosphatase, with ion inflow through channels (NMDAR, CaV1,Na). The biochemical reactions are represented by a deterministic system of differential equations, with a detailed description of the activation of CaMKII that includes the opening of the compact state of CaMKII. This single model captures realistic responses (temporal profiles with the differing timescales) of STDP and BTSP and their asymmetries. The simulations distinguish several mechanisms underlying STDP vs. BTSP, including i) the flow of [Formula: see text] through NMDAR vs. CaV1 channels, and ii) the origin of several time scales in the activation of CaMKII. The model also realizes a priming mechanism for E-LTP that is induced by [Formula: see text] flow through CaV1.3 channels. Once in the spine head, this small additional [Formula: see text] opens the compact state of CaMKII, placing CaMKII ready for subsequent induction of LTP.
突触可塑性(长时程增强/抑制(LTP/D))是学习的细胞机制。实验观察到两种不同类型的早期 LTP/D(E-LTP/D),作用于非常不同的时间尺度 - 尖峰时间依赖可塑性(STDP),时间尺度为数十毫秒;行为时间尺度突触可塑性(BTSP),时间尺度为秒。BTSP 是一种潜在的机制,用于快速学习位置细胞的空间位置。在这里,开发了一种海马锥体神经元突触的 E-LTP/D 诱导的计算模型。该单室模型表示两种相互作用的生化途径,用于激活(磷酸化)激酶(CaMKII)和磷酸酶,离子通过通道(NMDAR、CaV1、Na)流入。生化反应由确定性微分方程系统表示,其中详细描述了包括 CaMKII 紧密状态开放在内的 CaMKII 激活。该单一模型捕获了 STDP 和 BTSP 及其不对称性的现实响应(具有不同时间尺度的时间轮廓)。模拟区分了 STDP 与 BTSP 的几种机制,包括 i)[公式:见文本]通过 NMDAR 与 CaV1 通道的流动,以及 ii)CaMKII 激活中的几个时间尺度的起源。该模型还实现了通过 CaV1.3 通道的[公式:见文本]流动诱导的 E-LTP 的引发机制。一旦进入棘突头,这种少量额外的[公式:见文本]就会打开 CaMKII 的紧密状态,使 CaMKII 为随后的 LTP 诱导做好准备。