Suppr超能文献

使用自适应神经模糊推理系统(ANFIS)优化的卷积神经网络(CNN)监测缺血再灌注期间的肾脏微观解剖结构。

Monitoring kidney microanatomy during ischemia-reperfusion using ANFIS optimized CNN.

作者信息

Balakrishnan Niranjana Devi, Perumal Suresh Kumar

机构信息

Department of Biomedical Engineering, Paavai Engineering College, Namakkal, Tamil Nadu, India.

Department of Electronics and Communication Engineering, Chennai Institute of Technology (Autonomous), Chennai, Tamil Nadu, India.

出版信息

Int Urol Nephrol. 2025 Mar 18. doi: 10.1007/s11255-025-04449-7.

Abstract

Kidney disease is a dangerous disease that affects human health and causes various defects. Renal microbiological changes can be monitored using optical coherence tomography (OCT) images to identify the nature of the disease based on behavior during ischemia-reperfusion. Image analysis becomes the more sophisticated part of extracting information from feature dependencies from objects to identify the disease. Most methodologies use feature correlation dependencies in non-relation feature analysis-based disease identification with low precision and recall level. So, classification accuracy needs to be higher performance. To resolve this problem, we proposed the adaptive neuro-fuzzy inference system-based Resnet50 optimal convolutional neural network (ANFIS-CNN) method implemented using deep learning (DL) to monitor kidney disease. Initially, we analyze using OCT images collected from a standard repository. Furthermore, bidirectional filters can be used for preprocessing to reduce image noise. Gaussian filtering can be applied to identify the dependence of kidney structure. Afterward, the color density saturation can be analyzed through edge-based segmentation using the histogram equalization method, and the optimally extracted objects can be identified through edge-based segmentation. These spectral value-based relative feature detection thresholds are combined with texture point-based recursive spectral multiscale feature selection (RSMFS) to produce different entity contrasts. Then, spectral values are optimized with ANFIS-Resnet50 optimal CNN to classify the accuracy by selecting images. Moreover, the proposed method results in high classification accuracy up to 96.1 %, recall rate 95.18 % and precision up to 96.09 % well attained, enhancing their overall performance. The system develops high-performance image recognition for kidney disease monitoring.

摘要

肾脏疾病是一种影响人类健康并导致各种缺陷的危险疾病。可以使用光学相干断层扫描(OCT)图像监测肾脏微生物学变化,以根据缺血再灌注期间的表现识别疾病的性质。图像分析成为从对象的特征依赖关系中提取信息以识别疾病的更复杂部分。大多数方法在基于非关系特征分析的疾病识别中使用特征相关依赖关系,精度和召回率较低。因此,分类准确率需要更高的性能。为了解决这个问题,我们提出了基于自适应神经模糊推理系统的Resnet50最优卷积神经网络(ANFIS-CNN)方法,该方法使用深度学习(DL)来监测肾脏疾病。最初,我们使用从标准存储库收集的OCT图像进行分析。此外,可以使用双向滤波器进行预处理以减少图像噪声。高斯滤波可用于识别肾脏结构的依赖性。之后,可以通过使用直方图均衡化方法的基于边缘的分割来分析颜色密度饱和度,并通过基于边缘的分割来识别最佳提取的对象。这些基于光谱值的相对特征检测阈值与基于纹理点的递归光谱多尺度特征选择(RSMFS)相结合,以产生不同的实体对比度。然后,使用ANFIS-Resnet50最优CNN对光谱值进行优化,以通过选择图像来分类准确率。此外,所提出的方法实现了高达96.1%的高分类准确率、95.18%的召回率和高达96.09%的精度,很好地提高了它们的整体性能。该系统为肾脏疾病监测开发了高性能图像识别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验