Suppr超能文献

基于机器学习算法的颈股动脉脉搏波速度预测模型研究

Research on Prediction model of Carotid-Femoral Pulse Wave Velocity: Based on Machine Learning Algorithm.

作者信息

Chen Minghui, Xiong Jing, Li Moran, Hu Tao, Zhang Yi

机构信息

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.

Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.

出版信息

J Clin Hypertens (Greenwich). 2025 Mar;27(3):e70017. doi: 10.1111/jch.70017.

Abstract

Carotid-femoral pulse wave velocity (cf-PWV) is an important but difficult to obtain measure of arterial stiffness and an independent predictor of cardiovascular events and all-cause mortality. The objective of this study was to develop a predictive model for cf-PWV based on brachial-ankle pulse wave velocity (baPWV) and other the accessible clinical parameters. This model aims to allow patients to estimate their cf-PWV in advance without the need for direct measurement. We selected participants of the Northern Shanghai community from 2013 to 2022 as the study object. The Pearson correlation coefficient was employed for correlation analysis in feature selection. The linear regression models demonstrated low root mean square error (RMSE), error term (ε), and R values, indicating good predictive performance. A Cox proportional hazards model revealed a significant association between machine learning-predicted cf-PWV and mortality risk, supporting the validity of prediction model. Using a threshold of cf-PWV greater than 10 m/s as the criterion, a classification prediction model was developed. Shapley Additive Explanations (SHAP) analysis was then applied to the Gradient Boosting model to elucidate the predictive mechanism of the optimal model. Without precise instruments, doctors often cannot determine a patient's cf-PWV. When the cf-PWV value predicted by the machine learning algorithm is high, patients can be recommended for more precise measurements to confirm the prediction and emphasize the importance of follow-up health management and psychological support. It is feasible to use a machine learning algorithm based on baPWV and other readily available clinical parameters to predict cf-PWV.

摘要

颈股脉搏波速度(cf-PWV)是衡量动脉僵硬度的一项重要指标,但难以获取,它是心血管事件和全因死亡率的独立预测因子。本研究的目的是基于臂踝脉搏波速度(baPWV)和其他可获取的临床参数建立一个cf-PWV预测模型。该模型旨在让患者无需直接测量就能提前估算自己的cf-PWV。我们选取了2013年至2022年上海北部社区的参与者作为研究对象。在特征选择中采用Pearson相关系数进行相关性分析。线性回归模型显示出较低的均方根误差(RMSE)、误差项(ε)和R值,表明具有良好的预测性能。Cox比例风险模型显示机器学习预测的cf-PWV与死亡风险之间存在显著关联,支持了预测模型的有效性。以cf-PWV大于10米/秒为阈值标准,建立了一个分类预测模型。然后将Shapley加性解释(SHAP)分析应用于梯度提升模型,以阐明最优模型的预测机制。由于没有精确的仪器,医生常常无法确定患者的cf-PWV。当机器学习算法预测的cf-PWV值较高时,可建议患者进行更精确的测量以确认预测结果,并强调后续健康管理和心理支持的重要性。使用基于baPWV和其他易于获得的临床参数的机器学习算法来预测cf-PWV是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/853f/11917802/6bdb432ee650/JCH-27-e70017-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验