Cao Eric, Ma Da, Nayak Siddharth, Duong Tim Q
Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10467, United States.
Department of Internal Medicine Section of Gerontology and Geriatric Medicine, Wake Forest, University School of Medicine, Winston-Salam, NC 27109, United States.
Neurobiol Dis. 2023 Oct 15;187:106310. doi: 10.1016/j.nbd.2023.106310. Epub 2023 Sep 26.
This study reports a novel deep learning approach to predict mild cognitive impairment (MCI) conversion to Alzheimer's dementia (AD) within three years using whole-brain fluorodeoxyglucose (FDG) positron emission tomography (PET) and cognitive scores (CS).
This analysis consisted of 150 normal controls (CN), 257 MCI, and 205 AD subjects from ADNI. FDG-PET and CS were obtained at MCI diagnosis to predict AD conversion within three years of MCI diagnosis using convolutional neural networks.
Neurocognitive scores predicted better than FDG-PET per se, but the best model was a combination of FDG-PET, age, and neurocognitive data, yielding an AUC of 0.785 ± 0.096 and a balanced accuracy of 0.733 ± 0.098. Saliency maps highlighted putamen, thalamus, inferior frontal gyrus, parietal operculum, precuneus cortices, calcarine cortices, temporal gyrus, and planum temporale to be important for prediction.
Deep learning accurately predicts MCI conversion to AD and provides neural correlates of brain regions associated with AD conversion.
本研究报告了一种新颖的深度学习方法,该方法利用全脑氟脱氧葡萄糖(FDG)正电子发射断层扫描(PET)和认知评分(CS)来预测轻度认知障碍(MCI)在三年内转化为阿尔茨海默病(AD)。
该分析纳入了来自阿尔茨海默病神经影像学计划(ADNI)的150名正常对照(CN)、257名MCI患者和205名AD患者。在MCI诊断时获取FDG-PET和CS,使用卷积神经网络预测MCI诊断后三年内的AD转化情况。
神经认知评分本身比FDG-PET预测效果更好,但最佳模型是FDG-PET、年龄和神经认知数据的组合,曲线下面积(AUC)为0.785±0.096,平衡准确率为0.733±0.098。显著性映射突出显示壳核、丘脑、额下回、顶叶岛盖、楔前叶皮质、距状皮质、颞回和颞平面对于预测很重要。
深度学习能够准确预测MCI向AD的转化,并提供与AD转化相关的脑区的神经关联。