Suppr超能文献

使用卷积神经网络的自动化程序用于角膜共焦显微镜图像的客观且可重复选择。

Automated program using convolutional neural networks for objective and reproducible selection of corneal confocal microscopy images.

作者信息

Qiao Qincheng, Xue Wen, Li Jinzhe, Zheng Wenwen, Yuan Yongkai, Li Chen, Liu Fuqiang, Hou Xinguo

机构信息

Department of Endocrinology and Metabolism, Qilu Hospital, Shandong University, Jinan, China.

The First Clinical Medical College, Cheeloo College of Medicine, Shandong University, Jinan, China.

出版信息

Digit Health. 2025 Mar 17;11:20552076251326223. doi: 10.1177/20552076251326223. eCollection 2025 Jan-Dec.

Abstract

OBJECTIVE

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, posing a significant risk for foot ulcers and amputation. Corneal confocal microscopy (CCM) is a rapid, noninvasive method to assess DPN by analysing corneal nerve fibre morphology. However, selecting high-quality representative images remains a critical challenge.

METHODS

In this study, we propose a fully automated CCM image-selection algorithm based on deep learning feature extraction using ResNet-18 and unsupervised clustering. The algorithm consistently identifies representative images by balancing non-redundancy and representativeness, ensuring objectivity and reproducibility.

RESULTS

When validated against manual selection by researchers with varying expertise levels, the algorithm demonstrated superior performance in distinguishing DPN and reduced inter-observer variability. It completed the analysis of hundreds of images within 1 s, significantly enhancing diagnostic efficiency. Compared with traditional manual selection, the proposed method achieved higher diagnostic accuracy for key morphological parameters, including corneal nerve fibre density, length, and branch density.

CONCLUSION

The algorithm is open source and compatible with standard CCM workflows, offering researchers and clinicians a robust and efficient tool for DPN diagnosis. Further, multicentre studies are needed to validate these findings in diverse populations.

摘要

目的

糖尿病周围神经病变(DPN)是糖尿病常见的并发症,会引发足部溃疡和截肢的重大风险。角膜共焦显微镜检查(CCM)是一种通过分析角膜神经纤维形态来评估DPN的快速、非侵入性方法。然而,选择高质量的代表性图像仍然是一个关键挑战。

方法

在本研究中,我们提出了一种基于深度学习特征提取(使用ResNet - 18)和无监督聚类的全自动CCM图像选择算法。该算法通过平衡非冗余性和代表性来持续识别代表性图像,确保客观性和可重复性。

结果

在与不同专业水平的研究人员进行手动选择验证时,该算法在区分DPN方面表现出卓越性能,并减少了观察者间的变异性。它在1秒内完成了数百张图像的分析,显著提高了诊断效率。与传统手动选择相比,该方法在关键形态学参数(包括角膜神经纤维密度、长度和分支密度)方面实现了更高的诊断准确性。

结论

该算法是开源的,并且与标准CCM工作流程兼容,为研究人员和临床医生提供了一个用于DPN诊断的强大且高效的工具。此外,需要进行多中心研究以在不同人群中验证这些发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afb1/11915551/f0d6ed416263/10.1177_20552076251326223-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验