Alimov Dmitry V, Poryvaev Artem S, Fedin Matvey V
International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
Physics Department, Novosibirsk State University, 630090 Novosibirsk, Russia.
Molecules. 2025 May 21;30(10):2247. doi: 10.3390/molecules30102247.
Probes sensitive to mechanical stress are in high demand for analyzing pressure distributions in materials. Metal-organic frameworks (MOFs) are especially promising for designing pressure sensors due to their structural tunability. In this work, using classical molecular dynamics (MD) simulations, we clarified the mechanism of exceptional pressure sensitivity of the material based on the UiO-66 framework with a trace amount of spin probes encapsulated in cavities. The role of defects in the MOF structure has been revealed using a combination of electron paramagnetic resonance (EPR) spectroscopy and MD calculations, and potential degradation pathways under mechanical stress have been proposed. The combined MD and EPR study provides valuable insights for further development of new MOF-based sensors applicable for non-destructive pressure mapping in various materials.
对于分析材料中的压力分布而言,对机械应力敏感的探针需求旺盛。金属有机框架材料(MOFs)因其结构可调性,在设计压力传感器方面特别具有前景。在这项工作中,我们通过经典分子动力学(MD)模拟,阐明了基于UiO-66框架且在其孔洞中封装有微量自旋探针的材料具有卓越压力敏感性的机制。通过结合电子顺磁共振(EPR)光谱和MD计算,揭示了MOF结构中缺陷的作用,并提出了机械应力作用下潜在的降解途径。MD和EPR的联合研究为进一步开发适用于各种材料无损压力测绘的新型MOF基传感器提供了有价值的见解。