Suppr超能文献

三种住院的非重症新冠病毒病亚表型及插管或死亡随时间的变化:一项具有外部和纵向验证的潜在类别分析

Three hospitalized non-critical COVID-19 subphenotypes and change in intubation or death over time: A latent class analysis with external and longitudinal validation.

作者信息

Stringer William S, Labar Amy S, Geleris Joshua D, Sholle Evan V, Berlin David A, McGroder Claire M, Cummings Matthew J, O'Donnell Max R, Yi Haoyang, Yang Xuehan, Wei Ying, Schenck Edward J, Baldwin Matthew R

机构信息

Division of Pulmonary, Allergy, and Critical Care, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States of America.

Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America.

出版信息

PLoS One. 2025 Mar 19;20(3):e0316434. doi: 10.1371/journal.pone.0316434. eCollection 2025.

Abstract

BACKGROUND

There are two subphenotypes of COVID-19 acute respiratory distress syndrome with differential responses to corticosteroids, but whether similar subphenotypes of hospitalized non-critical COVID-19 patients exist remains unknown.

OBJECTIVE

To identify and validate non-critical COVID-19 subphenotypes at hospital admission that may elucidate pathobiology and facilitate heterogeneity-of-treatment effect analyses of clinical trials with non-critical COVID-19 patients.

METHODS

We conducted a multi-center retrospective cohort study of adults hospitalized with COVID-19 who were not intubated or did not die within 24 hours of admission. We derived and externally and longitudinally validated subphenotypes during the wild-type and delta severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV2) waves via latent class analysis using clinical and laboratory data at hospital admission. We trained XGBoost machine learning models to predict subphenotype.

RESULTS

We analyzed data for 4,827 hospitalized non-critical COVID-19 patients: 2,077 wild-type wave Columbia University Medical Center (CUMC) and affiliate hospital derivation cohort patients; 1,214 wild-type wave Cornell Medical Center and affiliate hospital external validation cohort patients; and 1,536 delta wave CUMC and affiliate hospital longitudinal validation cohort patients. A three-class latent class model best fit each cohort identifying subphenotypes that were low-inflammatory, intermediate-inflammatory, and high-inflammatory with fibrinolysis, with increasing 90-day risk of intubation or death across subphenotypes in the wild-type wave. However, in the delta wave, the intermediate-inflammatory subphenotype had the lowest 90-day risk of intubation or death. XGBoost model area under the receiver-operating-curve was 0.96 in the testing dataset, and biomarkers of inflammation and cardiorenal dysfunction were the strongest predictors of subphenotype.

CONCLUSION

We identified three hospitalized non-critical COVID-19 subphenotypes that persisted through the wild-type and delta SARS-CoV2 waves. The intermediate-inflammatory subphenotype had the greatest relative improvement in intubation and survival over time with the standardized use of corticosteroids and other interventions. Our machine learning model can facilitate heterogeneity-of-treatment effect analyses of clinical trials of adults hospitalized with non-critical COVID-19.

摘要

背景

新型冠状病毒肺炎(COVID-19)急性呼吸窘迫综合征存在两种亚表型,对皮质类固醇的反应不同,但住院的非重症COVID-19患者是否存在类似的亚表型仍不清楚。

目的

识别并验证入院时非重症COVID-19的亚表型,这可能有助于阐明病理生物学,并促进对非重症COVID-19患者临床试验治疗效果异质性的分析。

方法

我们对因COVID-19住院的成年人进行了一项多中心回顾性队列研究,这些患者未插管或在入院24小时内未死亡。我们通过潜在类别分析,利用入院时的临床和实验室数据,在野生型和德尔塔严重急性呼吸综合征冠状病毒2(SARS-CoV2)流行期间推导并在外部和纵向验证了亚表型。我们训练了XGBoost机器学习模型来预测亚表型。

结果

我们分析了4827例住院的非重症COVID-19患者的数据:2077例野生型流行期哥伦比亚大学医学中心(CUMC)及其附属医院推导队列患者;1214例野生型流行期康奈尔医学中心及其附属医院外部验证队列患者;以及1536例德尔塔流行期CUMC及其附属医院纵向验证队列患者。一个三类潜在类别模型最适合每个队列,识别出低炎症、中度炎症和高炎症伴纤维蛋白溶解的亚表型,在野生型流行期,各亚表型的插管或死亡90天风险逐渐增加。然而,在德尔塔流行期,中度炎症亚表型的插管或死亡90天风险最低。在测试数据集中,XGBoost模型的受试者工作特征曲线下面积为0.96,炎症和心肾功能不全的生物标志物是亚表型的最强预测因子。

结论

我们识别出三种住院的非重症COVID-19亚表型,它们在野生型和德尔塔SARS-CoV2流行期间持续存在。随着皮质类固醇和其他干预措施的标准化使用,中度炎症亚表型在插管和生存方面随时间的相对改善最大。我们的机器学习模型可以促进对非重症COVID-19住院成人临床试验治疗效果异质性的分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c80/11922525/62347d246e1c/pone.0316434.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验