Voß Samuel, Niemann Uli, Saalfeld Sylvia, Janiga Gábor, Berg Philipp
Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Germany; Forschungscampus STIMULATE, Magdeburg, Germany.
University Library, University of Magdeburg, Magdeburg, Germany.
Comput Biol Med. 2025 May;190:110018. doi: 10.1016/j.compbiomed.2025.110018. Epub 2025 Mar 18.
The interplay between intracranial aneurysm progression and hemodynamics motivates the application of image-based blood flow quantification, providing potential for the identification of high-risk aneurysms, treatment planning, and implant optimization. However, uncertainties arise throughout the interdisciplinary process, from medical imaging to parameter evaluation. This study systematically analyzes uncertainty globally, at individual workflow steps and for potential interactions. Eight factors affecting hemodynamic simulation accuracy - image reconstruction, lumen segmentation, surface smoothing, rheological modeling, inlet/outlet boundary condition, ostium/parent vessel definition - are varied for four representative patient-specific intracranial aneurysms. A total of 1024 transient simulations are evaluated considering twelve hemodynamic parameters to assess marginal and interaction effects. Global uncertainty analysis reveals median absolute deviations of 20.8-25.9 % for maximum velocity (Vmax), 6.8-19.2 % for inflow concentration index (ICI), 10.8-40.8 % for normalized wall shear stress (WSSnorm) and 2.8-48.9 % for low shear area (LSA). Isolated variation demonstrates the highest median deviations for the reconstruction algorithm (Vmax: 4.0-7.0 %, ICI: 6.8-18.9 %, WSSnorm: 13.3-25.1 %, LSA: 2.4-16.0 %), inlet (Vmax: 41.5-52.4 %, ICI: 1.4-8.6 %, WSSnorm: 14.6-28.5 %, LSA: 5.5-93.5 %) and outlet boundary condition (Vmax: 2.0-36.5 %, ICI: 0.6-39.9 %, WSSnorm: 2.4-83.2 %, LSA: 1.9-53.5 %). Lowest median deviations are found for rheological modeling and surface smoothing. Only minor interaction effects are observed between the reconstruction algorithm and inlet definition, as well as between inlet and outlet definitions. This study identifies pivotal variables essential for consistent hemodynamic quantification of intracranial aneurysms. Minimal interaction effects validate the isolated analysis of influencing factors in the majority of cases.
颅内动脉瘤进展与血流动力学之间的相互作用推动了基于图像的血流定量分析的应用,为识别高危动脉瘤、治疗规划和植入物优化提供了可能。然而,从医学成像到参数评估的整个跨学科过程中都存在不确定性。本研究系统地分析了全局、各个工作流程步骤以及潜在相互作用中的不确定性。针对四个具有代表性的患者特异性颅内动脉瘤,对影响血流动力学模拟准确性的八个因素——图像重建、管腔分割、表面平滑、流变学建模、入口/出口边界条件、开口/母血管定义——进行了变化。考虑十二个血流动力学参数,共评估了1024次瞬态模拟,以评估边际效应和相互作用效应。全局不确定性分析显示,最大速度(Vmax)的中位数绝对偏差为20.8 - 25.9%,流入浓度指数(ICI)为6.8 - 19.2%,归一化壁面切应力(WSSnorm)为10.8 - 40.8%,低剪切面积(LSA)为2.8 - 48.9%。单独变化显示,重建算法(Vmax:4.0 - 7.0%,ICI:6.8 - 18.9%,WSSnorm:13.3 - 25.1%,LSA:2.4 - 16.0%)、入口(Vmax:41.5 - 52.4%,ICI:1.4 - 8.6%,WSSnorm:14.6 - 28.5%,LSA:5.5 - 93.5%)和出口边界条件(Vmax:2.0 - 36.5%,ICI:0.6 - 39.9%,WSSnorm:2.4 - 83.2%,LSA:1.9 - 53.5%)的中位数偏差最高。流变学建模和表面平滑的中位数偏差最低。在重建算法与入口定义之间,以及入口与出口定义之间,仅观察到较小的相互作用效应。本研究确定了颅内动脉瘤血流动力学定量分析一致性所必需的关键变量。最小的相互作用效应验证了在大多数情况下对影响因素进行单独分析的合理性。