Suppr超能文献

乳腺癌组织的多光谱光声成像及其组织病理学验证

Multispectral photoacoustic imaging of breast cancer tissue with histopathology validation.

作者信息

Zhang Junhao, Arroyo Junior, Lediju Bell Muyinatu A

机构信息

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Biomed Opt Express. 2025 Feb 12;16(3):995-1005. doi: 10.1364/BOE.547262. eCollection 2025 Mar 1.

Abstract

Intraoperative multispectral photoacoustic pathology assessment presents a promising approach to guide biopsy resection. In this study, we developed and validated a novel photoacoustic technique to differentiate between healthy and cancerous tissues. Our method consisted of photoacoustic contrast calculations as a function of wavelength, followed by projections of the resulting spectra from training data into a two-dimensional space using principal component analysis to create representative spectra, then calculation of the average cosine similarity between the spectrum of each pixel in test data and the representative spectra. The test healthy tissue region had a 0.967 mean correlation with the representative healthy tissue spectrum and a lower mean correlation (0.801) with the cancer tissue spectrum. The test cancer tissue region had a 0.954 mean correlation with the cancer tissue spectrum and a lower mean correlation (0.762) with the healthy tissue spectrum. Our method was further validated through qualitative comparison with high-resolution hematoxylin and eosin histopathology scans. Healthy tissue was primarily correlated with the optical absorption of blood (i.e., deoxyhemoglobin), while invasive ductal carcinoma breast cancer tissue was primarily correlated with the optical absorption of lipids. Our label-free histopathology approach utilizing multispectral photoacoustic imaging has the potential to enable real-time tumor margin determination during biopsy or surgery.

摘要

术中多光谱光声病理学评估为指导活检切除提供了一种很有前景的方法。在本研究中,我们开发并验证了一种用于区分健康组织和癌组织的新型光声技术。我们的方法包括:根据波长计算光声对比度,然后使用主成分分析将训练数据所得光谱投影到二维空间以创建代表性光谱,接着计算测试数据中每个像素的光谱与代表性光谱之间的平均余弦相似度。测试的健康组织区域与代表性健康组织光谱的平均相关性为0.967,与癌组织光谱的平均相关性较低(0.801)。测试的癌组织区域与癌组织光谱的平均相关性为0.954,与健康组织光谱的平均相关性较低(0.762)。通过与高分辨率苏木精和伊红组织病理学扫描进行定性比较,我们的方法得到了进一步验证。健康组织主要与血液(即脱氧血红蛋白)的光吸收相关,而浸润性导管癌组织主要与脂质的光吸收相关。我们利用多光谱光声成像的无标记组织病理学方法有可能在活检或手术期间实现实时肿瘤边缘确定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fe9/11919340/4d8504426a88/boe-16-3-995-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验