Suppr超能文献

探索颗粒物(PM)和颗粒物机器学习(PM ML)预测模型:阿联酋的一项比较研究。

Exploring PM and PM ML forecasting models: a comparative study in the UAE.

作者信息

Abuouelezz Waad, Ali Nazar, Aung Zeyar, Altunaiji Ahmed, Shah Shaik Basheeruddin, Gliddon Derek

机构信息

Department of Electrical Engineering, Khalifa University, Abu Dhabi, UAE.

Department of Computer Science, Khalifa University, Abu Dhabi, UAE.

出版信息

Sci Rep. 2025 Mar 21;15(1):9797. doi: 10.1038/s41598-025-94013-1.

Abstract

Particulate Matters PM[Formula: see text] and PM[Formula: see text] present a major health and environmental concern in urban regions. This research compares machine learning and time series models, such as Decision Tree (DT), Random Forest (RF), Support Vector Regression (SVR), Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Facebook Prophet, for predictions of these matters. Their performances have been evaluated over 1-2 hours, 1 day and 1 week forecasting periods using five years real-life data from six ground stations in Abu Dhabi, UAE. Performance metrics including Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Percent Bias (PBIAS) were applied. Linear SVR was generally the best performing model for PM[Formula: see text] predictions at all stations with averages of 18.7% and 28.2% MAPE for 1 and 2-hour periods, respectively. However, CNN performed best in forecasting PM[Formula: see text] for 1-hour horizon, with an average MAPE of 12.6%. For the 2-hour forecast, SVR outperformed other models, with 18.3% MAPE. Facebook Prophet consistently outperformed others for both PM[Formula: see text] and PM[Formula: see text] with 21.8% and 13.4% MAPE for 1-day and 21.3% and 13.8% MAPE for 1-week, respectively. These best performing models yielded similar RMSE, MAE, and PBIAS values for both PM[Formula: see text] and PM[Formula: see text].

摘要

细颗粒物PM[公式:见文本]和PM[公式:见文本]是城市地区主要的健康和环境问题。本研究比较了机器学习和时间序列模型,如决策树(DT)、随机森林(RF)、支持向量回归(SVR)、卷积神经网络(CNN)、长短期记忆(LSTM)和Facebook Prophet,用于预测这些物质。使用阿联酋阿布扎比六个地面站的五年真实数据,在1 - 2小时、1天和1周的预测期内对它们的性能进行了评估。应用了包括平均绝对百分比误差(MAPE)、均方根误差(RMSE)、平均绝对误差(MAE)和百分比偏差(PBIAS)在内的性能指标。线性SVR通常是所有站点预测PM[公式:见文本]的最佳性能模型,1小时和2小时时段的平均MAPE分别为18.7%和28.2%。然而,CNN在预测1小时的PM[公式:见文本]方面表现最佳,平均MAPE为12.6%。对于2小时预测,SVR优于其他模型,MAPE为18.3%。Facebook Prophet在预测PM[公式:见文本]和PM[公式:见文本]方面始终优于其他模型,1天的MAPE分别为21.8%和13.4%,1周的MAPE分别为21.3%和13.8%。这些最佳性能模型在PM[公式:见文本]和PM[公式:见文本]的RMSE、MAE和PBIAS值方面相似。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5536/11928502/7445eb48e647/41598_2025_94013_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验