Suppr超能文献

基于麻雀搜索算法的支持向量机模型预测悬沙负荷

Suspended sediment load prediction using sparrow search algorithm-based support vector machine model.

作者信息

Samantaray Sandeep, Sahoo Abinash, Satapathy Deba Prakash, Oudah Atheer Y, Yaseen Zaher Mundher

机构信息

Department of Civil Engineering, National Institute of Technology Srinagar, Hazratbal, Jammu and Kashmir, 190006, India.

Department of Civil Engineering, Odisha University of Technology and Research, Bhubaneswar, Odisha, India.

出版信息

Sci Rep. 2024 Jun 5;14(1):12889. doi: 10.1038/s41598-024-63490-1.

Abstract

Prediction of suspended sediment load (SSL) in streams is significant in hydrological modeling and water resources engineering. Development of a consistent and accurate sediment prediction model is highly necessary due to its difficulty and complexity in practice because sediment transportation is vastly non-linear and is governed by several variables like rainfall, strength of flow, and sediment supply. Artificial intelligence (AI) approaches have become prevalent in water resource engineering to solve multifaceted problems like sediment load modelling. The present work proposes a robust model incorporating support vector machine with a novel sparrow search algorithm (SVM-SSA) to compute SSL in Tilga, Jenapur, Jaraikela and Gomlai stations in Brahmani river basin, Odisha State, India. Five different scenarios are considered for model development. Performance assessment of developed model is analyzed on basis of mean absolute error (MAE), root mean squared error (RMSE), determination coefficient (R), and Nash-Sutcliffe efficiency (E). The outcomes of SVM-SSA model are compared with three hybrid models, namely SVM-BOA (Butterfly optimization algorithm), SVM-GOA (Grasshopper optimization algorithm), SVM-BA (Bat algorithm), and benchmark SVM model. The findings revealed that SVM-SSA model successfully estimates SSL with high accuracy for scenario V with sediment (3-month lag) and discharge (current time-step and 3-month lag) as input than other alternatives with RMSE = 15.5287, MAE = 15.3926, and E = 0.96481. The conventional SVM model performed the worst in SSL prediction. Findings of this investigation tend to claim suitability of employed approach to model SSL in rivers precisely and reliably. The prediction model guarantees the precision of the forecasted outcomes while significantly decreasing the computing time expenditure, and the precision satisfies the demands of realistic engineering applications.

摘要

河流中悬浮泥沙负荷(SSL)的预测在水文建模和水资源工程中具有重要意义。由于泥沙输运在实际中具有高度非线性且受降雨、水流强度和泥沙供应等多个变量控制,开发一个一致且准确的泥沙预测模型非常必要。人工智能(AI)方法在水资源工程中已变得普遍,用于解决诸如泥沙负荷建模等多方面问题。本研究提出了一种将支持向量机与新型麻雀搜索算法相结合的稳健模型(SVM - SSA),以计算印度奥里萨邦布拉马尼河流域蒂尔加、杰纳普尔、贾拉伊凯拉和戈姆莱伊站的SSL。模型开发考虑了五种不同场景。基于平均绝对误差(MAE)、均方根误差(RMSE)、决定系数(R)和纳什 - 萨特克利夫效率(E)对所开发模型的性能进行评估。将SVM - SSA模型的结果与三种混合模型,即SVM - BOA(蝴蝶优化算法)、SVM - GOA(蚱蜢优化算法)、SVM - BA(蝙蝠算法)以及基准SVM模型进行比较。结果表明,对于以泥沙(滞后3个月)和流量(当前时间步和滞后3个月)为输入的场景V,SVM - SSA模型能够比其他模型更准确地成功估算SSL,其RMSE = 15.5287,MAE = 15.3926,E = 0.96481。传统SVM模型在SSL预测中表现最差。本研究结果表明所采用的方法适用于精确且可靠地对河流中的SSL进行建模。该预测模型保证了预测结果的精度,同时显著减少了计算时间消耗,且精度满足实际工程应用的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/195d/11153618/06cd1eb3af4e/41598_2024_63490_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验