Suppr超能文献

基于脑电图的睡眠剥夺期间反应时间预测

EEG-based prediction of reaction time during sleep deprivation.

作者信息

Harel Asaf, Levkovsky Anna, Nakdimon Idan, Gordon Barak, Shriki Oren

机构信息

Department of Cognitive and Brain Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel.

Israeli Air Force Aeromedical Center, Ramat Gan, Israel.

出版信息

Sleep. 2025 Jul 11;48(7). doi: 10.1093/sleep/zsaf080.

Abstract

Prolonged wakefulness is known to adversely affect basic cognitive abilities such as object recognition and decision-making. It affects the dynamics of neuronal networks in the brain and can even lead to hallucinations and epileptic seizures. In cognitive-intensive workplaces, there is a requirement to refine an objective method of quantifying the current level of cognitive capabilities, rather than relying on subjective self-reporting. In this study, we compiled electroencephalography (EEG) recordings from several sleep-deprivation workshops held by the Israeli Air Force, done by flight cadets and unmanned aerial vehicle operators. By extracting a wide range of EEG features and applying machine-learning techniques, we were able to accurately predict the reaction time of participants undergoing a simple psychomotor vigilance task, which acted as a stand-in for basic cognitive functions. Furthermore, through the use of interpretability methods, we examined the importance of different EEG features and their contribution to changes in the behavioral metrics.

摘要

众所周知,长时间清醒会对诸如物体识别和决策等基本认知能力产生不利影响。它会影响大脑神经网络的动态变化,甚至可能导致幻觉和癫痫发作。在认知要求较高的工作场所,需要完善一种客观方法来量化当前的认知能力水平,而不是依赖主观的自我报告。在本研究中,我们收集了以色列空军举办的多个睡眠剥夺研讨会的脑电图(EEG)记录,这些记录由飞行学员和无人机操作员完成。通过提取广泛的EEG特征并应用机器学习技术,我们能够准确预测参与简单心理运动警觉任务的参与者的反应时间,该任务可作为基本认知功能的替代指标。此外,通过使用可解释性方法,我们研究了不同EEG特征的重要性及其对行为指标变化的贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验