Ravindranath Rohith, Wang Sophia Y
Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California.
Ophthalmol Sci. 2024 Dec 6;5(3):100671. doi: 10.1016/j.xops.2024.100671. eCollection 2025 May-Jun.
Early detection of glaucoma allows for timely treatment to prevent severe vision loss, but screening requires resource-intensive examinations and imaging, which are challenging for large-scale implementation and evaluation. The purpose of this study was to develop artificial intelligence models that can utilize the wealth of data stored in electronic health records (EHRs) to identify patients who have high probability of developing glaucoma, without the use of any dedicated ophthalmic imaging or clinical data.
Cohort study.
A total of 64 735 participants who were ≥18 years of age and had ≥2 separate encounters with eye-related diagnoses recorded in their EHR records in the All of Us Research Program, a national multicenter cohort of patients contributing EHR and survey data, and who were enrolled from May 1, 2018, to July 1, 2022.
We developed models to predict which patients had a diagnosis of glaucoma, using the following machine learning approaches: (1) penalized logistic regression, (2) XGBoost, and (3) a deep learning architecture that included a 1-dimensional convolutional neural network (1D-CNN) and stacked autoencoders. Model input features included demographics and only the nonophthalmic lab results, measurements, medications, and diagnoses available from structured EHR data.
Evaluation metrics included area under the receiver operating characteristic curve (AUROC).
Of 64 735 patients, 7268 (11.22%) had a glaucoma diagnosis. Overall, AUROC ranged from 0.796 to 0.863. The 1D-CNN model achieved the highest performance with an AUROC score of 0.863 (95% confidence interval [CI], 0.862-0.864). Investigation of 1D-CNN model performance stratified by race/ethnicity showed that AUROC ranged from 0.825 to 0.869 by subpopulation, with the highest performance of 0.869 (95% CI, 0.868-0.870) among the non-Hispanic White subpopulation.
Machine and deep learning models were able to use the extensive systematic data within EHR to identify individuals with glaucoma, without the need for ophthalmic imaging or clinical data. These models could potentially automate identifying high-risk glaucoma patients in EHRs, aiding targeted screening referrals. Additional research is needed to investigate the impact of protected class characteristics such as race/ethnicity on model performance and fairness.
The author(s) have no proprietary or commercial interest in any materials discussed in this article.
青光眼的早期检测有助于及时治疗以防止严重视力丧失,但筛查需要资源密集型的检查和成像,这对大规模实施和评估具有挑战性。本研究的目的是开发人工智能模型,该模型可以利用电子健康记录(EHR)中存储的大量数据来识别青光眼发病可能性高的患者,而无需使用任何专门的眼科成像或临床数据。
队列研究。
在“我们所有人研究计划”中,共有64735名年龄≥18岁且在其EHR记录中有≥2次与眼科相关诊断的独立就诊记录的参与者。该计划是一个全国性的多中心患者队列,贡献EHR和调查数据,参与者于2018年5月1日至2022年7月1日入组。
我们使用以下机器学习方法开发模型来预测哪些患者被诊断为青光眼:(1)惩罚逻辑回归,(2)XGBoost,以及(3)一种深度学习架构,包括一维卷积神经网络(1D-CNN)和堆叠自动编码器。模型输入特征包括人口统计学信息以及仅从结构化EHR数据中获取的非眼科实验室结果、测量值、药物和诊断。
评估指标包括受试者工作特征曲线下面积(AUROC)。
在64735名患者中,7268名(11.22%)被诊断为青光眼。总体而言,AUROC范围为0.796至0.863。1D-CNN模型表现最佳,AUROC评分为0.863(95%置信区间[CI],0.862 - 0.864)。按种族/民族分层对1D-CNN模型性能的研究表明,各亚组的AUROC范围为0.825至0.869,在非西班牙裔白人亚组中表现最佳,为0.869(95%CI,0.868 - 0.870)。
机器学习和深度学习模型能够利用EHR中的大量系统数据识别青光眼患者,而无需眼科成像或临床数据。这些模型有可能自动识别EHR中的高风险青光眼患者,有助于进行有针对性的筛查转诊。需要进一步研究来调查种族/民族等受保护类别特征对模型性能和公平性的影响。
作者对本文中讨论的任何材料均无所有权或商业利益。